zoukankan      html  css  js  c++  java
  • HDU 不容易系列之一 错排公式

    Problem Description
    大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
    做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
    话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

    不幸的是,这种小概率事件又发生了,而且就在我们身边:
    事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

    现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?
    Input
    输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
    Output
    对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
    Sample Input
    2
    3
    Sample Output
    1

    2


    又是不知道公式就mmp系列,……搓牌公式,啊呸,错排公式……

    D(n) = (n-1) [D(n-2) + D(n-1)]                  D(1) = 0, D(2) = 1.
    emmmmm,用的就是这个公式,度娘的百科解释的可清楚了,而且还有好多种方法证明……窝就……嗯,挂代码    注意要用ll,不然会WA 
    #include<iostream>   //错排公式 a[i]=(i-1)*(a[i-1]+a[i-2])
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    ll n, a[25];
    int main()
    {
        a[1] = 0;
        a[2] = 1;
        for (int i = 3; i < 25; i++)
            a[i] = (i - 1)*(a[i - 1] + a[i - 2]);
        while (scanf("%lld", &n)!=EOF)
        {
            printf("%lld
    ", a[n]);
        }
        return 0;
    }
  • 相关阅读:
    Java集合的Stack、Queue、Map的遍历
    LinkedHashMap的实现原理
    HashSet的实现原理
    HashMap的实现原理
    leetcode526
    leetcode406
    leetcode413
    leetcode513
    leetcode338
    leetcode419
  • 原文地址:https://www.cnblogs.com/Egoist-/p/7418604.html
Copyright © 2011-2022 走看看