Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.
Sample Input
5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1
Sample Output
6
Source
题意是给你n个闭区间,形如[ai,bi],在这n个区间的每一个整点位置放东西,每个区间至少要放ci个,求总的最少要放的个数
了解过查分约束系统之后,比较容易知道是差分系统的最小差问题,那么就是找全形如 y-x>=k的不等式,然后再求一个最长路
关键是建图问题:p[i]表示1~i放的东西个数,那么对于每一个区间,就要满足p[bi] - p[ai-1]>=ci,即拉一条(ai-1)->bi的有向边
但是有一个隐藏的约束条件,由于是整点放,那么p[x] - p[x-1] <= 1 && p[x] - p[x-1] >= 0 即p[x-1]-p[x]>=-1 && p[x]-p[x-1]>=0
另外,由于区间可以从0开始,那么把所有的区间整体右移2个位置,就是从1开始的了
#include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <stack> #include <vector> using namespace std; const int INF = 0x3f3f3f3f; const int N = 5e4 + 10; struct Edge { int v, cost; Edge() {} Edge(int v, int cost) : v(v), cost(cost) {} }; vector<Edge> E[N]; void add(int u, int v, int w) { E[u].push_back(Edge(v, w)); } bool vis[N]; int d[N]; void SPFA(int st, int n) { memset(vis, false, sizeof vis); for(int i = 1; i <= n; ++i) d[i] = -INF; d[st] = 0; vis[st] = true; queue<int> que; while(!que.empty()) que.pop(); que.push(st); while(!que.empty()) { int u = que.front(); que.pop(); vis[u] = false; int sx = E[u].size(); for(int i = 0; i < sx; ++i) { int v = E[u][i].v; int w = E[u][i].cost; if(d[v] < d[u] + w) { d[v] = d[u] + w; if(!vis[v]) { vis[v] = true; que.push(v); } } } } } int main() { int n; while(~scanf("%d", &n)) { int a, b, c, m = 0, st = INF; for(int i = 0; i < n; ++i) { scanf("%d%d%d", &a, &b, &c); a+=2; b+=2; add(a - 1, b, c); m = max(m, b); st = min(st, a - 1); } for(int i = 2; i <= m; ++i) { add(i, i - 1, -1); add(i - 1, i, 0); } SPFA(st, m); printf("%d ", d[m]); } return 0; }