zoukankan      html  css  js  c++  java
  • Hive-Container killed by YARN for exceeding memory limits. 9.2 GB of 9 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.

    Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in stage 0.0 (TID 62, hadoop7, executor 17): ExecutorLostFailure (executor 17 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 9.2 GB of 9 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.
    Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1524)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1512)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1511)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1511)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1739)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1694)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1683)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    
    ERROR : FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Spark job failed because of out of memory.
    INFO : Completed executing command(queryId=hive_20190529100107_063ed2a4-e3b0-48a9-9bcc-49acd51925c1); Time taken: 1441.753 seconds
    Error: Error while processing statement: FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Spark job failed because of out of memory. (state=42000,code=3)
    Closing: 0: jdbc:hive2://hadoop1:10000/pdw_nameonce

    Hive on spark时报错

    解决
    a.set spark.yarn.executor.memoryOverhead=512G 调大(权宜之计),excutor-momery + memoryOverhead不能大于集群内存
    b.该问题的原因是因为OS层面虚拟内存分配导致,物理内存没有占用多少,但检查虚拟内存的时候却发现OOM,因此可以通过关闭虚拟内存检查来解决该问题,yarn.nodemanager.vmem-check-enabled=false 将虚拟内存检测设置为false

  • 相关阅读:
    GIT笔记
    C++新式类型转换
    C++ 静态链表基本算法实现
    C++ 顺序栈基本算法实现
    C++ 链栈 基本算法实现
    C++ 循环队列基本算法实现
    C++ 链队列基本算法实现
    C++优先级队列表基本算法实现
    C++单链表基本算法实现
    C++ 循环链表基本算法
  • 原文地址:https://www.cnblogs.com/EnzoDin/p/10950913.html
Copyright © 2011-2022 走看看