zoukankan      html  css  js  c++  java
  • ZROI普及五连测Day4

    ZROI普及五连测 (Day4)

    ZROI普及五连测 (Day4)

    A.刷题王者

    水题,略

    B.回到原点

    先把能抵消的全部抵消,剩下的就是需要调整的.
    剩下的一定是不能抵消的,而且 (U,D)(L,R) 两组一定是每组至多剩一种没有匹配完.

    调整的时候,考虑自身内部调整和相互匹配,取 (min) 即可.

    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <cmath>
    #include <ctime>
    #include <map>
    #include <set>
    #define MEM(x,y) memset ( x , y , sizeof ( x ) )
    #define rep(i,a,b) for (int i = (a) ; i <= (b) ; ++ i)
    #define per(i,a,b) for (int i = (a) ; i >= (b) ; -- i)
    #define pii pair < int , int >
    #define one first
    #define two second
    #define rint read<int>
    #define pb push_back
    #define db double
    #define ull unsigned long long
    #define lowbit(x) ( x & ( - x ) )
    #define mabs(x) ( x < 0 ? - x : x )
    
    using std::queue ;
    using std::set ;
    using std::pair ;
    using std::max ;
    using std::min ;
    using std::priority_queue ;
    using std::vector ;
    using std::swap ;
    using std::sort ;
    using std::unique ;
    using std::greater ;
    
    template < class T >
        inline T read () {
            T x = 0 , f = 1 ; char ch = getchar () ;
            while ( ch < '0' || ch > '9' ) {
                if ( ch == '-' ) f = - 1 ;
                ch = getchar () ;
            }
           while ( ch >= '0' && ch <= '9' ) {
                x = ( x << 3 ) + ( x << 1 ) + ( ch - 48 ) ;
                ch = getchar () ;
           }
           return f * x ;
        }
    
    const int N = 1e3 + 10 ;
    
    char s[N] ;
    int v[N] , w[N] ;
    int n , x , y ;
    int cnt[4] ;
    
    signed main (int argc , char * argv[]) {
        scanf ("%s" , s + 1 ) ; n = strlen ( s + 1 ) ;
        if ( n & 1 ) return puts ("-1") , 0 ;
        rep ( i , 1 , n ) if ( s[i] == 'U' ) v[i] = 1 ; else if ( s[i] == 'D' ) v[i] = - 1 ;
        rep ( i , 1 , n ) if ( s[i] == 'L' ) w[i] = 1 ; else if ( s[i] == 'R' ) w[i] = - 1 ;
        rep ( i , 1 , n ) { v[i] += v[i-1] ; w[i] += w[i-1] ; }
        x = abs ( v[n] ) ; y = abs ( w[n] ) ;
        if ( ( x + y ) & 1 ) return puts ("-1") , 0 ;
        if ( x == y ) printf ("%d
    " , x ) ;
        else {
            int del = abs ( x - y ) ;
            if ( x > y ) x -= del , y += del ;
            else x += del , y -= del ;
            if ( ( x & 1 ) && ( y & 1 ) ) {
                int tmp = x / 2 + y / 2 + 1 ;
                printf ("%d
    " , min ( del + x , tmp ) ) ;
            } else {
                int tmp = x / 2 + y / 2 ;
                printf ("%d
    " , min ( del + x , tmp ) ) ;
            }
        }
        return 0 ;
    }
    

    C.快乐矩阵

    把矩阵黑白间隔染色 (:)

    你发现,每次一定是选择一个黑格子,一个白格子.

    然后由于是矩阵,所以我们一定可以构造出一条从 ((1,1))((n,m)) 的不重不漏的路径.

    每次沿着这样的路径一路修改下去,每次操作把上一个格子清零,这样一定能推到最后.

    到最后能置为全 (0) 的充要条件一定是黑格子之和等于白格子之和.

    愉快 (AC) .

    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <queue>
    #include <cmath>
    #include <ctime>
    #include <map>
    #include <set>
    #define MEM(x,y) memset ( x , y , sizeof ( x ) )
    #define rep(i,a,b) for (int i = (a) ; i <= (b) ; ++ i)
    #define per(i,a,b) for (int i = (a) ; i >= (b) ; -- i)
    #define pii pair < int , int >
    #define one first
    #define two second
    #define rint read<int>
    #define int long long
    #define pb push_back
    #define db double
    #define ull unsigned long long
    #define lowbit(x) ( x & ( - x ) )
    
    using std::queue ;
    using std::set ;
    using std::pair ;
    using std::max ;
    using std::min ;
    using std::priority_queue ;
    using std::vector ;
    using std::swap ;
    using std::sort ;
    using std::unique ;
    using std::greater ;
    
    template < class T >
        inline T read () {
            T x = 0 , f = 1 ; char ch = getchar () ;
            while ( ch < '0' || ch > '9' ) {
                if ( ch == '-' ) f = - 1 ;
                ch = getchar () ;
            }
           while ( ch >= '0' && ch <= '9' ) {
                x = ( x << 3 ) + ( x << 1 ) + ( ch - 48 ) ;
                ch = getchar () ;
           }
           return f * x ;
        }
    
    const int N = 5e2 + 11 ;
    
    int idx , res1 , res2 ;
    int e[N][N] , n , m ;
    bool stats[N] ;
    
    signed main (int argc , char * argv[]) {
        n = rint () ; m = rint () ;
        rep ( i , 1 , n ) rep ( j , 1 , m ) e[i][j] = rint () ;
        rep ( i , 1 , m ) stats[i] = stats[i-1] ^ 1 ;
        rep ( i , 1 , n ) rep ( j , 1 , m ) {
            if ( i & 1 ) {
                if ( stats[j] ) res1 += e[i][j] ;
                else res2 += e[i][j] ;
            } else {
                if ( stats[j] ) res2 += e[i][j] ;
                else res1 += e[i][j] ;
            }
        }
        puts ( res1 == res2 ? "Yes" : "No" ) ;
        return 0 ;
    }
    

    D.梦中的位运算

    明白这样一个事实 (:)

    [x^2+y^2le (x&y)^2 + (x|y)^2 ]

    引理 (:)
    (1)守恒定律 (:) 在该题目叙述的系统中,(1)既不会凭空产生也不会凭空消失,只会从一个元素转移到另一个元素,系统中 (1) 的代数和时时刻刻保持不变.(滑稽.jpg)

    所以...你贪心地把所有 (1) 堆一起就好了...

    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <queue>
    #include <cmath>
    #include <ctime>
    #include <map>
    #include <set>
    #define MEM(x,y) memset ( x , y , sizeof ( x ) )
    #define rep(i,a,b) for (int i = (a) ; i <= (b) ; ++ i)
    #define per(i,a,b) for (int i = (a) ; i >= (b) ; -- i)
    #define pii pair < int , int >
    #define one first
    #define two second
    #define rint read<int>
    #define int long long
    #define pb push_back
    #define db double
    #define ull unsigned long long
    #define lowbit(x) ( x & ( - x ) )
    
    using std::queue ;
    using std::set ;
    using std::pair ;
    using std::max ;
    using std::min ;
    using std::priority_queue ;
    using std::vector ;
    using std::swap ;
    using std::sort ;
    using std::unique ;
    using std::greater ;
    
    template < class T >
        inline T read () {
            T x = 0 , f = 1 ; char ch = getchar () ;
            while ( ch < '0' || ch > '9' ) {
                if ( ch == '-' ) f = - 1 ;
                ch = getchar () ;
            }
           while ( ch >= '0' && ch <= '9' ) {
                x = ( x << 3 ) + ( x << 1 ) + ( ch - 48 ) ;
                ch = getchar () ;
           }
           return f * x ;
        }
    
    const int N = 1e5 + 100 ;
    
    int n , v[N] , cnt[65] , g[65] , ans ;
    
    vector < bool > tmp ;
    inline void divide (int x) {
        tmp.clear () ;
        while ( x ) { tmp.pb ( x & 1ll ) ; x >>= 1ll ; }
        // for (int k : tmp) printf ("%lld " , k ) ; puts ("") ;
        for (int i = 0 ; i < tmp.size () ; ++ i)
            if ( tmp[i] ) ++ cnt[i] ;
        return ;
    }
     
    inline int quick (int a , int p) {
        int res = 1ll ;
        while ( p ) {
            if ( p & 1ll ) res *= a ;
            a *= a ; p >>= 1ll ;
        }
        return res ;
    }
    
    signed main (int argc , char * argv[]) {
        n = rint () ; rep ( i , 1 , n ) v[i] = rint () ;
        rep ( i , 0 , 62 ) g[i] = quick ( 2ll , i ) ; 
        rep ( i , 1 , n ) divide ( v[i] ) ;
        // rep ( i , 0 , 4 ) printf ("%lldth : %lld
    " , i , cnt[i] ) ;
        rep ( i , 1 , n ) {
            int res = 0 ;
            per ( j , 62 , 0 ) if ( cnt[j] ) -- cnt[j] , res += g[j] ;
            v[i] = res ;
        }
        rep ( i , 1 , n ) ans += v[i] * v[i] ;
        printf ("%lld
    " , ans ) ;
        return 0 ;
    }
    
  • 相关阅读:
    51Nod 1052/1053/1115 最大M子段和V1/V2/V3
    51Nod1207 内存管理
    51Nod1207 内存管理
    51Nod1444 破坏道路
    51Nod1444 破坏道路
    51Nod1349 最大值
    51Nod1349 最大值
    51nod1485 字母排序
    aspx页面中的html标签中的值传到aspx.cs文件中的方法
    C#属性的使用
  • 原文地址:https://www.cnblogs.com/Equinox-Flower/p/11757005.html
Copyright © 2011-2022 走看看