zoukankan      html  css  js  c++  java
  • python 一致性哈希 分布式

    hash_ring

    # -*- coding: utf-8 -*-
    """
        hash_ring
        ~~~~~~~~~~~~~~
        Implements consistent hashing that can be used when
        the number of server nodes can increase or decrease (like in memcached).
    
        Consistent hashing is a scheme that provides a hash table functionality
        in a way that the adding or removing of one slot
        does not significantly change the mapping of keys to slots.
    
        More information about consistent hashing can be read in these articles:
    
            "Web Caching with Consistent Hashing":
                http://www8.org/w8-papers/2a-webserver/caching/paper2.html
    
            "Consistent hashing and random trees:
            Distributed caching protocols for relieving hot spots on the World Wide Web (1997)":
                http://citeseerx.ist.psu.edu/legacymapper?did=38148
    
    
        Example of usage::
    
            memcache_servers = ['192.168.0.246:11212',
                                '192.168.0.247:11212',
                                '192.168.0.249:11212']
    
            ring = HashRing(memcache_servers)
            server = ring.get_node('my_key')
    
        :copyright: 2008 by Amir Salihefendic.
        :license: BSD
    """
    
    import math
    import sys
    from bisect import bisect
    
    if sys.version_info >= (2, 5):
        import hashlib
        md5_constructor = hashlib.md5
    else:
        import md5
        md5_constructor = md5.new
    
    class HashRing(object):
    
        def __init__(self, nodes=None, weights=None):
            """`nodes` is a list of objects that have a proper __str__ representation.
            `weights` is dictionary that sets weights to the nodes.  The default
            weight is that all nodes are equal.
            """
            self.ring = dict()
            self._sorted_keys = []
    
            self.nodes = nodes
    
            if not weights:
                weights = {}
            self.weights = weights
    
            self._generate_circle()
    
        def _generate_circle(self):
            """Generates the circle.
            """
            total_weight = 0
            for node in self.nodes:
                total_weight += self.weights.get(node, 1)
    
            for node in self.nodes:
                weight = 1
    
                if node in self.weights:
                    weight = self.weights.get(node)
    
                factor = math.floor((40*len(self.nodes)*weight) / total_weight);
    
                for j in range(0, int(factor)):
                    b_key = self._hash_digest( '%s-%s' % (node, j) )
    
                    for i in range(0, 3):
                        key = self._hash_val(b_key, lambda x: x+i*4)
                        self.ring[key] = node
                        self._sorted_keys.append(key)
    
            self._sorted_keys.sort()
    
        def get_node(self, string_key):
            """Given a string key a corresponding node in the hash ring is returned.
    
            If the hash ring is empty, `None` is returned.
            """
            pos = self.get_node_pos(string_key)
            if pos is None:
                return None
            return self.ring[ self._sorted_keys[pos] ]
    
        def get_node_pos(self, string_key):
            """Given a string key a corresponding node in the hash ring is returned
            along with it's position in the ring.
    
            If the hash ring is empty, (`None`, `None`) is returned.
            """
            if not self.ring:
                return None
    
            key = self.gen_key(string_key)
    
            nodes = self._sorted_keys
            pos = bisect(nodes, key)
    
            if pos == len(nodes):
                return 0
            else:
                return pos
    
        def iterate_nodes(self, string_key, distinct=True):
            """Given a string key it returns the nodes as a generator that can hold the key.
    
            The generator iterates one time through the ring
            starting at the correct position.
    
            if `distinct` is set, then the nodes returned will be unique,
            i.e. no virtual copies will be returned.
            """
            if not self.ring:
                yield None, None
    
            returned_values = set()
            def distinct_filter(value):
                if str(value) not in returned_values:
                    returned_values.add(str(value))
                    return value
    
            pos = self.get_node_pos(string_key)
            for key in self._sorted_keys[pos:]:
                val = distinct_filter(self.ring[key])
                if val:
                    yield val
    
            for i, key in enumerate(self._sorted_keys):
                if i < pos:
                    val = distinct_filter(self.ring[key])
                    if val:
                        yield val
    
        def gen_key(self, key):
            """Given a string key it returns a long value,
            this long value represents a place on the hash ring.
    
            md5 is currently used because it mixes well.
            """
            b_key = self._hash_digest(key)
            return self._hash_val(b_key, lambda x: x)
    
        def _hash_val(self, b_key, entry_fn):
            return (( b_key[entry_fn(3)] << 24)
                    |(b_key[entry_fn(2)] << 16)
                    |(b_key[entry_fn(1)] << 8)
                    | b_key[entry_fn(0)] )
    
        def _hash_digest(self, key):
            m = md5_constructor()
            m.update(bytes(key,encoding='utf-8'))
            #return map(ord, m.digest())
            return list(m.digest())
    
    
    '''
    memcache_servers = ['192.168.0.246:11212',
                        '192.168.0.247:11212',
                        '192.168.0.249:11212']
    
    ring = HashRing(memcache_servers)
    server = ring.get_node('my_key')
    '''
    
    # 增加权重
    
    memcache_servers = ['192.168.0.246:11212',
                        '192.168.0.247:11212',
                        '192.168.0.249:11212']
    weights = {
        '192.168.0.246:11212': 1,
        '192.168.0.247:11212': 2,
        '192.168.0.249:11212': 1
    }
    
    ring = HashRing(memcache_servers, weights)
    server = ring.get_node('my_key')
    print(server)

     

    增加删除机器时有可能数据找不到

  • 相关阅读:
    深度学习框架caffe在macOS Heigh Sierra上安装过程实录
    关于MacOS升级10.13系统eclipse菜单灰色无法使用解决方案
    Struts2中的OGNL详解
    JAR包介绍大全用途作用详解JAVA
    使用SQLQuery 在Hibernate中使用sql语句
    Spring整合Struts的两种方式介绍
    springMVC使用@ResponseBody返回json
    springMVC controller配置方式总结
    安装GitLab出现ruby_block[supervise_redis_sleep] action run
    Mac系统下源码编译安装MySQL 5.7.17
  • 原文地址:https://www.cnblogs.com/Erick-L/p/7237520.html
Copyright © 2011-2022 走看看