zoukankan      html  css  js  c++  java
  • NOIP2017 题解(给自己看的) --有坑要填


    几道水题就不写了....

    D1T1精妙证明:

    把ax+by = z 的z按照模a剩余系分类
    由于((a,b)=1)所以对于每个(kin[0, a)), (kcdot b)都在不同剩余系内!!(反证法)

    那么自然最大的取不到数在(a-1)*b的剩余系内, 也就是((a-1)*b - a = ab-a-b​)

    D1T3

    orz GXZ:https://www.cnblogs.com/GXZlegend/p/7838900.html
    (记忆化搜索?) https://blog.csdn.net/enjoy_pascal/article/details/78592786
    70分做法显然

    100分做法: 思想是把DP转移抽象为DAG
    如果不是DAG: 只要可转移到终点的合法状态不在环内就可以正常dp
    否则puts("-1")
    p.s. 只要在topsort中环加外向树上的点(illegal points) 入度都大于0 , 所以topsort一遍就ok拉!!!

    这道题卡常丧心病狂...
    这个程序会re(60分)...不敢开longlong... 求dalao debug..

    #include<bits/stdc++.h>
    using namespace std;
    
    typedef pair<int, int> pii;
    #define FI first
    #define SE second
    #define PB push_back
    #define rep(_i, _st, _ed) for(register int _i = (_st); _i <= (_ed); ++_i)
    #define per(_i, _ed, _st) for(register int _i = (_ed); _i >= (_st); --_i)
    inline int read(){int ans = 0, f = 1; char c = getchar();while(c < '0' || c > '9') f = (c == '-') ? -1 : f, c = getchar();while('0' <= c && c <= '9') ans = ans*10 + c - '0', c = getchar();return ans;}
    
    const int maxn = 1e5+5, maxm = 3e5+5, mxk = 51;
    
    int n, m, p;
    //邻接表
    struct graph{
        int v, w, nxt;
    }edge[maxm];
    int head[maxn]; 
    void adde(int u, int v, int w){
        static int cnt = 0;
        edge[++cnt].v = v;
        edge[cnt].w = w;
        edge[cnt].nxt = head[u];
        head[u] = cnt;
    }
    
    //精简dijstra
    priority_queue<pii> pq;
    int dis[maxn]; bool vis[maxn];
    void dijstra(){
        memset(dis, 0x3f, sizeof dis);
        memset(vis, 0, sizeof vis);
        dis[1] = 0; 
        pq.push(make_pair(0, 1));
        while(!pq.empty()){
            int u = pq.top().second; pq.pop();
            if(vis[u]) continue;
            vis[u] = 1;
            for(int e = head[u]; e; e = edge[e].nxt){
                int v = edge[e].v, w = edge[e].w;
                if(dis[u] + w < dis[v]) {
                    dis[v] = dis[u] + w;
                    pq.push(make_pair(-dis[v], v));
                }
            }
        }
    }
    
    int T, k; 
    
    const int mxhsh = maxn*mxk;
    int f[mxhsh], ind[mxhsh], le[mxhsh], ri[mxhsh], cnt, pt[mxhsh], q[mxhsh];
    #define hsh(_k, _u) ((_k)*n + _u)
    #define mod(_cur) if(_cur > p) _cur -= p;
    
    signed main(){
        T = read();
        while(T--){
            n = read(), m = read(), k = read(), p = read();
            memset(head, 0, sizeof head), memset(edge, 0, sizeof edge);
            rep(i, 1, m){
                int u = read(), v = read(), w = read();
                adde(u, v, w);
            }
    		dijstra();
            //构建状态转移图 (该题中为一种扩展最短路图)
            cnt = 1; memset(ind, 0, sizeof ind);
            rep(u, 1, n) rep(x, 0, k){
                le[hsh(x, u)] = cnt;
                for(int e = head[u]; e; e = edge[e].nxt){
                    int v = edge[e].v, w = edge[e].w, x2;
                    x2 = dis[u] + w - dis[v] + x;
                    if(x2 > k || x2 < 0) continue;
                    
                    ++ind[hsh(x2, v)];     
    				//printf("u=%d v=%d w=%d, fr = %d to = %d, ind = %d
    ",u, v, w,  hsh(x, u), hsh(x2, v), ind[hsh(x2, v)]);
                                
                    pt[cnt++] = hsh(x2, v);
                }
                ri[hsh(x, u)] = cnt - 1;
            }
    
            //拓扑排序 + 状态转移
            memset(f, 0, sizeof f);
            f[hsh(0, 1)] = 1;
    
            int fr = 1, bk = 0;
            rep(i, 1, hsh(k, n)) if(!ind[i]) q[++bk] = i;//这句必须有!!常数再大也要加!!!
            
            while(bk >= fr){
                int u = q[fr++];
                rep(i, le[u], ri[u]){
                    int v = pt[i];
                    f[v] += f[u]; mod(f[v]);
    
                    if( (--ind[v]) == 0) q[++bk] = v;
                }
            }
    
            //统计答案
            int infini = 0, ans = 0;
            rep(x, 0, k){
                if(ind[hsh(x, n)]) infini = 1;
                ans += f[hsh(x, n)]; mod(ans);
            }
            if(infini) puts("-1");
            else printf("%d
    ", ans);
        }
        return 0;
    }
    
    

    D2T2

    正解(O(3^nn^2))....
    注释很详细了

    //这题卡常!!!
    #include<bits/stdc++.h>
    using namespace std;
    
    typedef pair<int, int> pii;
    #define FI first
    #define SE second
    #define PB push_back
    #define rep(_i, _st, _ed) for(register int _i = (_st); _i <= (_ed); ++_i)
    #define per(_i, _ed, _st) for(register int _i = (_ed); _i >= (_st); --_i)
    inline int read(){int ans = 0, f = 1; char c = getchar();while(c < '0' || c > '9') f = (c == '-') ? -1 : f, c = getchar();while('0' <= c && c <= '9') ans = ans*10 + c - '0', c = getchar();return ans;}
    
    #define min(a, b) ((a) < (b)) ? (a) : (b) //注意在这个宏定义中a, b都会算两次
    int f[13][10005];
    int n, m, mat[15][15], log_2[10005], mincost[15];
    signed main(){
        n = read(), m = read();
        rep(i, 0, n) rep(j, 0, n) mat[i][j] = 1e7;
        rep(i, 1, m){
            int u = read(), v = read(), w = read();
            u--, v--;
            mat[v][u] = mat[u][v] = min(mat[u][v], w);
        }
        
        log_2[0] = 1;
        rep(i, 1, n) log_2[(1 << i)] = i;
    
        int mxsta = (1 << n) - 1, ans = 1e8;
        memset(f, 0x2f, sizeof f);
        rep(u, 0, n-1) f[0][(1<<u)] = 0;//这一步非常机智, 使得程序无需枚举起始点
    
        rep(l, 1, n) rep(sta, 0, mxsta){
            int rev = mxsta ^ sta;
    
            //求补集中每个节点向原图连边的mincost
            for(int cur = rev; cur; cur -= cur&(-cur)){
                int d = log_2[cur&(-cur)];
                mincost[d] = 1e8;
                rep(j, 0, n - 1)
                    //当前集合中存在j
                    if(sta & (1 << j))  
                        mincost[d] = min(mincost[d], mat[d][j] * l);
            }
            //不重复枚举补集的子集
            for(int sub = rev; sub; sub = (sub-1) & rev){
                int cost = 0;//将该子集连入树中的花费(dep == l)
                
                //枚举补集的子集中的每一个元素
                for(int cur = sub; cur; cur -= cur&(-cur)){
                    int d = log_2[cur&(-cur)];
                    //当前元素
                    cost += mincost[d];
                }
                //cout<<cost<<endl;
                f[l] [sta | sub] = min( f[l] [sta | sub], f[l-1][sta] + cost);
            }
        }
    
    
        rep(i, 0, n){
            ans = min(ans, f[i][mxsta]);
            //printf("u=%lld i=%lld ans = %lld
    ", u, i, f[i][mxsta]);            
        }
        cout<<ans<<endl;
        return 0;
    }
    
    
  • 相关阅读:
    Android画图最基本的三个对象(Color,Paint,Canvas)
    搭建Android开发环境之旅
    对象序列化与反序列化
    JUnit 3.8 演示递归删除文件目录的 测试类程序 .
    JUnit 3.8 让所有测试程序 实现 复合的测试(TestSuite)
    JUnit 3.8 通过反射测试私有方法
    Java NIO
    Java泛型 类型变量的限定
    组织领导层在信息化建设中须要解决的问题
    bootstrap之鼠标操作
  • 原文地址:https://www.cnblogs.com/Eroad/p/9539591.html
Copyright © 2011-2022 走看看