zoukankan      html  css  js  c++  java
  • 三角求值问题

    egin{Example}

    [x = cot frac { pi } { 11 } - cot frac { 2 pi } { 11 } + cot frac { 3 pi } { 11 } + cot frac { 4 pi } { 11 } + cot frac { 5 pi } { 11 }.]
    end{Example}
    egin{Solution}
    (邵美悦)记$z = cos ( pi / 11 ) + i sin ( pi / 11 )$,则
    egin{align*} mathrm { i } x & = frac { 1 + z ^ { 2 } } { 1 - z ^ { 2 } } - frac { 1 + z ^ { 4 } } { 1 - z ^ { 4 } } + frac { 1 + z ^ { 6 } } { 1 - z ^ { 6 } } + frac { 1 + z ^ { 8 } } { 1 - z ^ { 8 } } + frac { 1 + z ^ { 10 } } { 1 - z ^ { 10 } } \ & = frac { p ( z ) } { q ( z ) }, end{align*}
    其中
    egin{align*}
    q ( z ) = & left( 1 - z ^ { 2 } ight) left( 1 - z ^ { 4 } ight) left( 1 - z ^ { 6 } ight) left( 1 - z ^ { 8 } ight) left( 1 - z ^ { 10 } ight) \
    p ( z ) = & 3 - z ^ { 2 } - 5 z ^ { 4 } + 2 z ^ { 6 } - 2 z ^ { 8 } + z ^ { 10 } \
    & + z ^ { 12 } + z ^ { 14 } + z ^ { 16 } + z ^ { 18 } + z ^ { 20 } \
    & - 2 z ^ { 22 } + 2 z ^ { 24 } - 5 z ^ { 26 } - z ^ { 28 } + 3 z ^ { 30 } \
    =& 1 - z + z ^ { 2 } - z ^ { 3 } - 10 z ^ { 4 } - z ^ { 5 } \
    &+ z ^ { 6 } - z ^ { 7 } + z ^ { 8 } - z ^ { 9 } + z ^ { 10 }\
    = &frac { 1 + z ^ { 11 } } { 1 + z } - 11 z ^ { 4 } \
    = &- 11 z ^ { 4 }.
    end{align*}
    接下来再考察$q(z)$.由于
    egin{align*}
    q ( z ) = & 1 - z ^ { 2 } - z ^ { 4 } + z ^ { 10 } \
    & + z ^ { 12 } + z ^ { 14 } - z ^ { 16 } - z ^ { 18 } - z ^ { 20 } \
    & + z ^ { 26 } + z ^ { 28 } - z ^ { 30 } \
    = & 1 - z - z ^ { 2 } - z ^ { 3 } + z ^ { 5 } \
    & + z ^ { 6 } + z ^ { 7 } - z ^ { 8 } + z ^ { 9 } + z ^ { 10 },
    end{align*}

    egin{align*}
    [ q ( z ) ] ^ { 2 } = & 1 - 2 z - z ^ { 2 } + 3 z ^ { 4 } + 4 z ^ { 5 } \
    & + z ^ { 6 } - 2 z ^ { 7 } - 8 z ^ { 8 } + z ^ { 10 } \ & + z ^ { 12 } - 2 z ^ { 13 } + z ^ { 14 } + 2 z ^ { 15 } \
    & + 5 z ^ { 16 } - z ^ { 18 } + 2 z ^ { 19 } + z ^ { 20 } \
    =& 1 - z + z ^ { 2 } - z ^ { 3 } + z ^ { 4 } - z ^ { 5 } \
    & + z ^ { 6 } - z ^ { 7 } - 10 z ^ { 8 } - z ^ { 9 } + z ^ { 10 } \
    = & - 11 z ^ { 8 },
    end{align*}
    因此
    [x ^ { 2 } = - left[ frac { p ( z ) } { q ( z ) } ight] ^ { 2 } = 11.]
    注意到$x>0$,所以$x=sqrt{11}$.
    end{Solution}

    extbf{注.}用单位根暴力解这类三角恒等式的时候可以在关于$x$和$z$的联立方程中消去$z$得到$x$满足的代数方程(次数可能会比较高),再设法求解$x$.这里给出的做法是在观察到$p(z)$具有比较简单的形式后直接化简$q(z)$,如果直接按比较机械的消元法则会得到$left(x^2-11 ight)^5=0$,但计算量会更大一些.

    egin{Example}
    计算
    [ an ^ { 6 } 20 ^ { circ } + an ^ { 6 } 40 ^ { circ } + an ^ { 6 } 80 ^ { circ }.]
    end{Example}
    egin{Solution}
    (邵美悦)利用三倍角公式易知$cos20^ { circ },cos140^ { circ },cos260^ { circ }$是一元三次方程$8x^3-6x-1=0$的三个根,所以$sec 20^ { circ },sec140^ { circ },sec 260^ { circ }$是一元三次方程$x^3+6x^2-8=0$的三个根,也就是矩阵
    [A = left[ egin{array} { c c c } { 0 } & { 0 } & { 8 } \ { 1 } & { 0 } & { 0 } \ { 0 } & { 1 } & { - 6 } end{array} ight]]
    的三个特征值.注意到
    egin{align*}
    & an ^ { 6 } 20 ^ { circ } + an ^ { 6 } 40 ^ { circ } + an ^ { 6 } 80 ^ { circ } \
    = & left( sec ^ { 2 } 20 ^ { circ } - 1 ight) ^ { 3 } + left( sec ^ { 2 } 140 ^ { circ } - 1 ight) ^ { 3 } + left( sec ^ { 2 } 260 ^ { circ } - 1 ight) ^ { 3 } \
    = & operatorname { tr } left( left( A ^ { 2 } - I ight) ^ { 3 } ight).
    end{align*}
    直接计算可得
    [left( A ^ { 2 } - I ight) ^ { 3 } = left[ egin{array} { c c c } { - 1521 } & { 8760 } & { - 50448 } \ { 264 } & { - 1521 } & { 8760 } \ { 1095 } & { - 6306 } & { 36315 } end{array} ight].]
    因此
    [ an ^ { 6 } 20 ^ { circ } + an ^ { 6 } 40 ^ { circ } + an ^ { 6 } 80 ^ { circ } = 33273.]
    end{Solution}

  • 相关阅读:
    Bootstrap之Carousel问题
    IMG图片和文字同行显示
    divcss5布局
    使用PHP QR Code生成二维码
    mysql grant用户权限设置
    Linux下的压缩解压缩命令详解
    linux网站目录及Apache权限的设置
    lamp环境编译(apache2.4.7 php5.4.25 mysql 5.5.23)
    mysql开启远程访问
    lamp环境编译(实际通过)
  • 原文地址:https://www.cnblogs.com/Eufisky/p/10429282.html
Copyright © 2011-2022 走看看