(2020年上海市高考数学练习)设$ain mathbb{R}$,若存在定义域为$mathbb{R}$的函数$f(x)$既满足“对于任意$x_0in mathbb{R}$, $f(x_0)$的值为$x_0^2$或$x_0$”,又满足“关于$x$的方程$f(x)=a$无实数解”,则$a$的取值范围为
$(-infty,0)cup (0,1)cup (1,+infty)$
唐代诗人李顾的诗《古从军行》开头两句说: “白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为$x^2+y^2leqslant 1$,若将军从点$A(2,0)$处出发,河岸线所在直线方程为$x+y=3$,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为
(东城区2019—2020学年第二学期期末高一)对于任意实数$a,b,c,d$,表达式$ad-bc$称为二阶行列式(determinant),记作
$left| egin{matrix}
a& b\
c& d\
end{matrix}
ight|$.
(I)求下列行列式的值:
ding{172} $left| egin{matrix}
1& 0\
0& 1\
end{matrix}
ight|$;quad
ding{173} $left| egin{matrix}
1& 3\
2& 6\
end{matrix}
ight|$;quad
ding{174} $left| egin{matrix}
-2& 5\
10& -25\
end{matrix}
ight|$;
(II)求证:向量$p=(a,b)$与向量$q=(c,d)$共线的充要条件是
$left| egin{matrix}
a& b\
c& d\
end{matrix}
ight|=0$;
(III)讨论关于$x,y$的二元一次方程组
$$
egin{cases}
a_1x+b_1y=c_1,\
a_2x+b_2y=c_2,
end{cases}(a_1a_2b_1b_2
eq 0)
$$
有唯一解的条件,并求出解. (结果用二阶行列式的记号表示)
20.已知函数$f(x)=axln x+b$ ($a,b$为常数),在点$(1,0)$处切线方程为$y=x-1$.
(1)试求$a,b$的值;
(2)若方程$f(x)=m$有两不等实数根,求$m$的范围.
(3)设$g(x)=f'(x)$, $A(x_1,y_1),B(x_2,y_2)$为曲线$y=g(x)$上不同两点,记直线$AB$的斜率为$k$,证明:
$k>g'left(frac{x_1+x_2}{2}
ight)$.
21.已知$S_n=left{A|A=(a_1,a_2,a_3,cdots,a_n),a_i=0\, ext{或}\,
1,1=1,2,cdots,n
ight}\,(ngeqslant 2)$,对于$U,Vin S_n$, $d(U,V)$表示$U$和$V$中相对应的元素不同的个数.
(1)令$U=(0,0,0,0,0)$,存在$m$个$Vin S_5$,使得$d(U,V)=2$,写出$m$的值;
(2)令$W=underbrace{(0,0,0,cdots,0)}_{n\, ext{个}\,0}$,
若$U,V=S_n$,求证: $d(U,W)+d(V,W)geqslant d(U,V)$;
(3)令$U=(a_1,a_2,a_3,cdots,a_n)$,若$Vin S_n$,求所有$d(U,V)$之和.
(东城区2019—2020学年第二学期期末高二数学试题)设集合$S_n={n,n+1,cdots,2n-1}$,若$X$是$S_n$的子集,把$X$中所有数的和称为$X$的“容量” (规定空集的容量为$0$),若$X$的容量为奇(偶)数,则称$X$为$S_n$的奇(偶)子集.
(I)当$n=3$时,写出$S_n$的所有奇子集;
(II)求证:当$ngeqslant 3$时, $S_n$的所有奇子集的容量之和等于所有偶子集的容量之和;
(III)当$ngeqslant 3$时,求$S_n$的所有奇子集的容量之和.
(I)解:当$n=3$时, $S_n={3,4,5}$.
$S_n$的所有奇子集为${3},{5},{3,4},{4,5}$.
(II)证明:首先证明$S_n$,的奇子集与偶子集个数相等.
设奇数$kin S_n$,对于$S_n$的每个奇子集$A$,
当$kin A$时,取$B={x|xin A ext{且}x eq k}$.
当$k otin A$时,取$B=Acup{k}$,则$B$为$S_n$的偶子集.
反之,亦然.
所以, $S_n$的奇子集与偶子集是一一对应的.
所以, $S_n$的奇子集与偶子集个数相等.
对于$forall iin S_n,i>1$,含$i$的$S_n$的子集共有$2^{n-1}$个.
其中必有一半是奇子集,一半是偶子集,从而对于每个数$i$,在奇子集的和与偶子集的和中, $i$所占的个数是一样的.
所以$S_n$的所有奇子集的容量的和与所有偶子集的容量的和相等.
(III)解:由于每个元素在奇子集中都出现$2^{n-2}$次,故奇子集的容量和为$(n+n+1+cdots +2n-1) imes 2^{n-2}=n(3n-1) imes 2^{n-3}$.
(北京市西城区 2019—2020学年度第二学期期末试卷)设函数$f(x)$定义域为$D$,若函数$f(x)$满足:对任意$cin D$,存在$a,bin D$,使得$frac{f(a)-f(b)}{a-b}=f'(c)$成立,则称函数$f(x)$满足性质$Gamma$.下列函数不满足性质$Gamma$的是
(A) $f(x)=x^2$ (B) $f(x)=x^3$
(C) $f(x)=e^x$ (D) $f(x)=ln x$
选B.可取$c=0$.
(北京市西城区 2019—2020学年度第二学期期末试卷)已知函数$f(x)=lnx+ax-a$.
(I)求函数$f(x)$的单调区间;
(II)求证:当$a>1$时,函数$g(x)=e^{x-1}-f(x)$存在最小值,且最小值小于$1$.
(2019-2020房山区第二学期期末高二数学试题)设$[x]$表示不大于$x$的最大整数,则对任意实数$x$,给出以下四个命题:
ding{172} $[-x]=-[x]$; ding{173} $[x+1]=[x]$; ding{174} $[2x]=2[x]$; ding{175} $[x]+left[x+frac{1}{2}
ight]=[2x]$.
则假命题是(填上所有假命题的序号).
%http://www.gaokzx.com/c/202008/45756.html
1.集合的概念
(1)集合是数学中的基本概念,很多后续数学知识或理论(函数,集合论等)都是建立在集合的基础之上,但集合是不可定义(第三次数学危机)的概念.具有某种性质的对象全体称为一个集合,对象称为集合的元素.
集合中的元素具有确定性、互异性和无序性.
(2)集合的分类:元素个数为有限个的集合称为有限集;元素个数为无限个的集合称为无限集.
特别地,不含任何元素的集合称为空集,用$emptyset$表示.
(3)集合的表示方法:列举法、描述法和韦恩(Venn)图法.
2.元素与集合、集合之间的关系
(1)元素与集合之间的关系有“属于$in$”或“不属于$ otin$”.
(2)集合之间的关系
(i)包含关系:包含关系与子集的概念等价,即集合$A$包含于集合$B$等价于$A$是$B$的子集,记作$Asubseteq B$;集合$A$真包含于集合$B$等价于$A$是$B$的真子集,记作$Avarsubsetneqq B$;特别地,空集$emptyset$是任何集合的子集,是任何非空集合的真子集.
注:包含关系是用来刻画集合元素个数的多少,与不等号$<$与$leqslant$类似.
(ii)不包含关系:若集合$A$中至少有一个元素不属于集合$B$,就称集合$A$不包含于集合$B$,记作$A subseteq B$.
(iii)集合的相等:若$Asubseteq B$且$Bsubseteq A$,则集合$A,B$相等,记作$A=B$.
3.集合的运算(可用韦恩图直观呈现)
(1)集合的交、并、补的运算
$Acap B={x|xin A ext{且}xin B},Acup B={x|xin A ext{或}xin B}$,
$complement_UA={x|xin U,x otin A, Asubseteq U}$.也可记为$A'$或$A^c$.
(2)集合运算中一些常用的结论
(i)交换律: $Acap B=Bcap A,Acup B=Bcup A$;
(ii)结合律: $Acap (Bcap C)=(Acap B)cap C, Acup (Bcup C)=(Acup B)cup C$;
(iii)分配律: $Acap (Bcup C)=(Acap B)cup (Acap C), Acup (Bcap C)=(Acup B)cap (Acup C)$;
(iv)吸收律: $Acup (Acap B)=A,Acap (Acup B)=A$;
(v)反演律(摩根律): $complement_U(Acap B)=complement_U Acup complement_UB,complement_U (Acup B)=complement_U Acap complement_UB$.
4.有限集子集的个数
若有限集$A$含有$n$个元素,则$A$的子集有$2^n$个,真子集有$2^n-1$个.
5.有限集的元素个数$mathrm{card}(A)$或$|A|$
对任意两个有限集合$A,B$,有$|Acup B|=|A|+|B|-|Acap B|$,
$|complement_U(Acup B)|=|U|-|A|-|B|+|complement_U(Acap B)|$.
此结论可以推广到任意$n$个有限集合$A_1,A_2,cdots,A_n$ (称为容斥原理),并在组合数学、数论等领域有非常重要的应用.
(2019 AMC 10A) Problem
For how many integers $n$ between $1$ and $50$, inclusive, is[frac{(n^2-1)!}{(n!)^n}]an integer? (Recall that $0! = 1$.)
$ extbf{(A) } 31 qquad extbf{(B) } 32 qquad extbf{(C) } 33 qquad extbf{(D) } 34 qquad extbf{(E) } 35$
Solution
Solution 1
The main insight is that
[frac{(n^2)!}{(n!)^{n+1}}]
is always an integer. This is true because it is precisely the number of ways to split up $n^2$ objects into $n$ unordered groups of size $n$. Thus,
[frac{(n^2-1)!}{(n!)^n}=frac{(n^2)!}{(n!)^{n+1}}cdotfrac{n!}{n^2}]
is an integer if $n^2 mid n!$, or in other words, if $n mid (n-1)!$. This condition is false precisely when $n=4$ or $n$ is prime, by Wilson's Theorem. There are $15$ primes between $1$ and $50$, inclusive, so there are $15 + 1 = 16$ terms for which
[frac{(n^2-1)!}{(n!)^{n}}]
is potentially not an integer. It can be easily verified that the above expression is not an integer for $n=4$ as there are more factors of $2$ in the denominator than the numerator. Similarly, it can be verified that the above expression is not an integer for any prime $n=p$, as there are more factors of p in the denominator than the numerator. Thus all $16$ values of n make the expression not an integer and the answer is $50-16=oxed{mathbf{(D)} 34}$.
Solution 2
We can use the P-Adic Valuation (more info could be found here: Mathematicial notation) of n to solve this problem (recall the P-Adic Valuation of 'n' is denoted by $v_p (n)$ and is defined as the greatest power of some prime 'p' that divides n. For example, $v_2 (6)=1$ or $v_7 (245)=2$ .) Using Legendre's formula, we know that :
[v_p (n!)= sum_{i=1}^infty lfloor frac {n}{p^i}
floor]
Seeing factorials involved in the problem, this prompts us to use Legendre's formula where n is a power of a prime.
We also know that , $v_p (m^n) = n cdot v_p (m)$ . Knowing that $amid b$ if $v_p (a) le v_p (b)$ , we have that :
[n cdot v_p (n!) le v_p ((n^2 -1 )!)]and we must find all n for which this is true.
If we plug in $n=p$, by Legendre's we get two equations:
[v_p ((n^2 -1)!) = sum_{i=1}^infty lfloor frac {n^2 -1}{p^i}
floor = (p-1)+0+...+0 = p-1]
And we also get :
[v_p ((n!)^n) = n cdot v_p (n!)= n cdot sum_{i=1}^infty lfloor frac {n}{p^i}
floor = p cdot ( 1+0+...0) = p]
But we are asked to prove that $n cdot v_p (n!) le v_p ((n^2 -1 )!) Longrightarrow p le p-1$ which is false for all 'n' where n is prime.
Now we try the same for $n=p^2$ , where p is a prime. By Legendre we arrive at:
[v_p ((p^4 -1)!) = p^3 + p^2 + p -3]and[p^2 cdot v_p (p^2 !) = p^3 + p^2]
Then we get:
[p^2 cdot v_p (p!) le v_p ((n^4 -1)!) Longrightarrow p^3 + p^2 le p^3 + p^2 + p -3]Which is true for all primes except for 2, so $2^2 = 4$ doesn't work. It can easily be verified that for all $n=p^i$ where $i$ is an integer greater than 2, satisfies the inequality :[n cdot v_p (n!) le v_p ((n^2 -1 )!).]
Therefore, there are 16 values that don't work and $50-16 = oxed{mathbf{(D)} 34}$ values that work.
Solution 3 (Guessing)
First, we see that $n=1, 6, 8, 9, 10, 12, 14$ work. This leads us to the conclusion of $50-16 = oxed{ extbf{(D)} 34}$