zoukankan      html  css  js  c++  java
  • Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,exp,erf)

    1.1Bearbeiten
    {displaystyle int _{0}^{infty }{ ext{erf}}^{;2}left({sqrt {x}}\, ight)\,e^{-ax}\,dx={frac {4}{api }}cdot {frac {operatorname {arccot} {sqrt {1+a}}}{sqrt {1+a}}}qquad { ext{Re}}(a)>0}{displaystyle int _{0}^{infty }{	ext{erf}}^{;2}left({sqrt {x}}\,
ight)\,e^{-ax}\,dx={frac {4}{api }}cdot {frac {operatorname {arccot} {sqrt {1+a}}}{sqrt {1+a}}}qquad {	ext{Re}}(a)>0}
    Beweis

    {displaystyle I=int _{0}^{infty }{ ext{erf}}^{;2}left({sqrt {x}}\, ight)\,e^{-ax}\,dx=int _{0}^{infty }{ ext{erf}}^{;2}(x)\,e^{-ax^{2}}\,2x\,dx}{displaystyle I=int _{0}^{infty }{	ext{erf}}^{;2}left({sqrt {x}}\,
ight)\,e^{-ax}\,dx=int _{0}^{infty }{	ext{erf}}^{;2}(x)\,e^{-ax^{2}}\,2x\,dx} ist nach partieller Integration

    {displaystyle left[-{frac {1}{a}}\,e^{-ax^{2}}\,{ ext{erf}}^{;2}(x) ight]_{0}^{infty }+int _{0}^{infty }{frac {1}{a}}\,e^{-ax^{2}}\,2\,{ ext{erf}}(x)\,{frac {2}{sqrt {pi }}}\,e^{-x^{2}}\,dx={frac {2}{a{sqrt {pi }}}}int _{0}^{infty }2\,{ ext{erf}}(x)\,e^{-(a+1)x^{2}}\,dx}{displaystyle left[-{frac {1}{a}}\,e^{-ax^{2}}\,{	ext{erf}}^{;2}(x)
ight]_{0}^{infty }+int _{0}^{infty }{frac {1}{a}}\,e^{-ax^{2}}\,2\,{	ext{erf}}(x)\,{frac {2}{sqrt {pi }}}\,e^{-x^{2}}\,dx={frac {2}{a{sqrt {pi }}}}int _{0}^{infty }2\,{	ext{erf}}(x)\,e^{-(a+1)x^{2}}\,dx}.

    Nach der Ersetzung {displaystyle { ext{erf}}(x)={frac {2}{sqrt {pi }}}int _{0}^{x}e^{-t^{2}}\,dt={frac {2}{sqrt {pi }}}int _{0}^{1}e^{-x^{2}t^{2}}\,x\,dt}{displaystyle {	ext{erf}}(x)={frac {2}{sqrt {pi }}}int _{0}^{x}e^{-t^{2}}\,dt={frac {2}{sqrt {pi }}}int _{0}^{1}e^{-x^{2}t^{2}}\,x\,dt} ist

    {displaystyle I={frac {4}{api }}int _{0}^{infty }int _{0}^{1}2\,e^{-x^{2}t^{2}}\,x\,e^{-(a+1)x^{2}}\,dt\,dx={frac {4}{api }}int _{0}^{1}int _{0}^{infty }2x\,e^{-(t^{2}+a+1)x^{2}}\,dx\,dt}{displaystyle I={frac {4}{api }}int _{0}^{infty }int _{0}^{1}2\,e^{-x^{2}t^{2}}\,x\,e^{-(a+1)x^{2}}\,dt\,dx={frac {4}{api }}int _{0}^{1}int _{0}^{infty }2x\,e^{-(t^{2}+a+1)x^{2}}\,dx\,dt}

    {displaystyle ={frac {4}{api }}int _{0}^{1}{frac {1}{t^{2}+a+1}}\,dt={frac {4}{api }}cdot {frac {operatorname {arccot} {sqrt {1+a}}}{sqrt {1+a}}}}{displaystyle ={frac {4}{api }}int _{0}^{1}{frac {1}{t^{2}+a+1}}\,dt={frac {4}{api }}cdot {frac {operatorname {arccot} {sqrt {1+a}}}{sqrt {1+a}}}}.

  • 相关阅读:
    POJ2777
    链表
    模板
    poj 3468(线段树)
    用react编写一个hello world
    用express快速写一个hello world
    naturalWidth与naturalHeight
    div里面的图片垂直居中
    js将网址转为二维码并下载图片
    记一个视频播放器插件 video.js
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730814.html
Copyright © 2011-2022 走看看