zoukankan      html  css  js  c++  java
  • GraphQL搭配MongoDB入门项目实战

    什么是GraphQL

    GraphQL 是一种面向 API 的查询语言。在互联网早期,需求都以 Web 为主,那时候数据和业务需求都不复杂,所以用 RestAPI 的方式完全可以满足需求。但是随着互联网的发展,数据量增大,业务需求多变。还有各种客户端需要接口适配,基于 RestAPI 的方式,显得越来呆板,因此 GraphQL 便应运而生。它至少可以提供以下三个方面的优势

    1. GraphQL 提供更方便的 API 查询

    不同的客户端有时候需要返回的数据格式不同,之前使用 RestAPI 的方式,需要后端针对每一个客户端提供单独的接口。随着业务需求的增加,维护的成本随机呈指数级跃升。而使用 GraphQL 就比较开心了,只需要写一套接口即可

    1. 解决前后端过于依赖

    在开发的过程中,前端需要和后端反反复复确认各个字段,防止到时候开发到一半,因为没有对好字段,要大块大块地改代码。现在有 GraphQL 就比较方便了,你需要什么类型的字段,就自己写对应的查询语法

    1. 节约网络和计算机内存资源

    之前通过 RestAPI 的方式写接口,有一个很大的问题在于,对于接口的定义,需要前期做大量的工作,针对接口做各种力度的拆分,但即使这样,也没办法应对需求的风云突变。有时候需要返回的仅仅是某个用户的某一类型的数据,但不得不把该用户的其他信息也一并返回来,这既浪费了网络的资源,也消耗了计算机的性能。显然不够优雅,GraphQL 再一次证明了它的强大,它能够提供 DIY 获取所需要的数据,用多少,拿多少,可以说是相当环保了

    PS : 更多 GraphQL 的介绍可以看文末的参考资料

    介绍

    这篇文章,我将用一个具体的 Todo List 实例,和大家一起,一步步手动搭建一个 GraphQL + MongoDB 的项目实例。我们将会在其中用到以下库,开始之前需要提前安装好:

    1. graphene_mongo
    2. graphene
    3. mongoengine
    4. flask_graphql
    5. Flask

    在开始之前,我们来梳理一下我们的核心需求,我们要建立一个 Todo List 产品,我们核心的表只有两个,一个是用户表,存储所有的用户信息,另外一个是任务表,存储着所有用户的任务信息。任务表通过用户 id 与对应的用户关联。表结构对应的是一对多的关系,核心的数据字段如下:

    task表

    { 
        "_id" : ObjectId("5c353fd8771502a411872712"), 
        "_in_time" : "2019-01-09 08:26:53", 
        "_utime" : "2019-01-09 09:26:39", 
        "task" : "read", 
        "start_time" : "2019-01-09 08:26:53", 
        "end_time" : "2019-01-09 08:26:53", 
        "repeat" : [
            "Wed"
        ], 
        "delete_flag" : NumberInt(0), 
        "user" : "1"
    }
    

    user表

    { 
        "_id" : "1", 
        "_in_time" : "2019-01-09 08:39:16", 
        "_utime" : "2019-01-09 09:23:25", 
        "nickname" : "xiao hong", 
        "sex" : "female", 
        "photo": "http://xh.jpg",
        "delete_flag" : NumberInt(0)
    }
    

    项目结构

    一图胜千言,为更清晰的了解项目的整体结构,我将项目的整体目录结构打印下来,小伙伴们可以参照着目录结构,看接下来的搭建步骤

    ----task_graphql
        |----api.py
        |----database
        |    |----__init__.py
        |    |----base.py
        |    |----model_task.py
        |    |----model_user.py
        |----requirements.txt
        |----schema.py
        |----schema_task.py
        |----schema_user.py
    
     
    pic_1.png
    • user_model 和 task_model 定义数据模块,直接数据库 mongo 对接
    • 上层定义的 schema 操作 shema_user 和 schema_task 对数据 model 进行增删改查操作
    • 最后 flask 搭建对外的 api 服务实现和外界的请求交互

    创建数据模型

    我们的数据模型结构非常简单

    • user_model 列出所有的用户信息
    • task_model 列出所有的任务信息,通过user字段与用户表关联,表示该任务归属于哪一个用户
     
    pic_2.png
    base.py
    from mongoengine import connect
    
    connect("todo_list", host="127.0.0.1:27017")
    

    只需要通过调用 mongoengine 的 connect 指定对应的数据库链接信息和数据库即可,后面直接引入至Flask模块会自动识别连接

    model_user.py
    import sys
    sys.path.append("..")
    
    from mongoengine import Document
    from mongoengine import (StringField, IntField)
    from datetime import datetime
    
    
    class ModelUser(Document):
    
        meta = {"collection": "user"}
    
        id = StringField(primary_key=True)
        _in_time = StringField(required=True, default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
        _utime = StringField(required=True, default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
        nickname = StringField(required=True)
        sex = StringField(default="unknown", required=True)
        delete_flag = IntField(default=0, required=True)
    

    所要定义的数据文档都通过 mongoengine 的 Document 继承,它可以将对应字段转换成类属性,方便后期对数据进行各种操作,meta 字段指定对应的你需要链接的是哪张 mongo 表

    model_task.py
    import sys
    sys.path.append("..")
    
    from mongoengine import Document
    from mongoengine import (StringField, ListField, IntField, ReferenceField)
    
    from .model_user import ModelUser
    from datetime import datetime
    
    
    class ModelTask(Document):
    
        meta = {"collection": "task"}
        
        _in_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
        _utime = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
        task = StringField(default="", required=True)
        start_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
        end_time = StringField(default=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), required=True)
        repeat = ListField(StringField(required=True))
        delete_flag = IntField(default=0, required=True)
        user = ReferenceField(ModelUser, required=True)
    

    其中 required 表示这个字段是必须字段,default 可以设置该字段的默认值。ReferenceField 可以指定和哪个模型相关联,这里指定的是 ModelUser 字段,关联默认为对应 mongo 表中的 _id 字段

    创建GraphQL查询

    现在我们已经将数据库和模型部分的连接功能完成了,接下来创建 API 部分,在我们的 task_graphql 目录下,有两个文件,schema_task.py 和 schema_user.py 分别将 model_task 和 model_user 类映射成 Graphene schema对象

    schema_task.py
    from database.model_task import ModelTask
    from graphene_mongo import MongoengineObjectType
    
    import graphene
    import schema_user
    
    from datetime import datetime
    
    
    class TaskAttribute:
        id = graphene.ID()
        _in_time = graphene.String()
        _utime = graphene.String()
        task = graphene.String()
        start_time = graphene.String()
        end_time = graphene.String()
        repeat = graphene.List(graphene.String)
        delete_flag = graphene.Int()
        user = graphene.String()
    
    
    class Task(MongoengineObjectType):
    
        class Meta:
            model = ModelTask
    
    
    class TaskNode(MongoengineObjectType):
        class Meta:
            model = ModelTask
            interfaces = (graphene.relay.Node, )
    
    schema_user.py
    from database.model_task import ModelTask
    from graphene_mongo import MongoengineObjectType
    
    import graphene
    
    from datetime import datetime
    
    class TaskAttribute:
        id = graphene.ID()
        _in_time = graphene.String()
        _utime = graphene.String()
        task = graphene.String()
        start_time = graphene.String()
        end_time = graphene.String()
        repeat = graphene.List(graphene.String)
        delete_flag = graphene.Int()
        user = graphene.String()
    
    class Task(MongoengineObjectType):
    
        class Meta:
            model = ModelTask
    
    class TaskNode(MongoengineObjectType):
        class Meta:
            model = ModelTask
            interfaces = (graphene.relay.Node, )
    

    现在我们创建一个 schema.py 的文件,把刚才定义好的 schema_task.py 和 schema_user.py 文件引入进来,定义两个对外访问的接口

    • tasks: 查询所有任务信息,返回一个list
    • users: 查询所有用户信息,返回一个list
    import schema_user
    import schema_task
    import graphene
    from graphene_mongo.fields import MongoengineConnectionField
    
    
    class Query(graphene.ObjectType):
    
        node = graphene.relay.Node.Field()
    
        tasks = MongoengineConnectionField(schema_task.TaskNode)
    
        users = MongoengineConnectionField(schema_user.UserNode)
    
    schema = graphene.Schema(query=Query)
    

    创建 Flask 应用

    在主目录下创建一个 api.py 文件,将我们之前定义好的数据库连接和 schema 引入进来,用 Flask 的 add_url_rule 方法将两者关联起来,为了方便访问,我们通过引入 flask_graphql 的 GraphQLView 方法,将接口可视化出来,方便调试

    from flask import Flask
    from schema import schema
    from flask_graphql import GraphQLView
    from database.base import connect
    from logger import AppLogger
    
    log = AppLogger("task_graphql.log").get_logger()
    
    app = Flask(__name__)
    app.debug = True
    
    app.add_url_rule("/graphql", view_func=GraphQLView.as_view("graphql", schema=schema, graphiql=True))
    
    if __name__ == '__main__':
        app.run()
    

    到这里,我们就已经用 graphql 成功创建了一个可查询的 Todo List 接口,接下来。我们可以用它来测试一下查询接口吧。然后在开始查询之前大家需要自己 mock 点数据到 mongo 里面

     
    pic_3.png

    我们访问接口地址(http://127.0.0.1:5000/graphql),来查询一下看看效果

     
    pic_4.png

    添加 GraphQL 更新方法(mutation)

    GraphQL 官方将更新创建操作,全部整合在 mutation 下,它包含了插入和更新数据功能,接下来我们就继续上面的操作,将这部分功能完善

    schema_task.py
    from database.model_task import ModelTask
    from graphene_mongo import MongoengineObjectType
    
    import graphene
    
    from datetime import datetime
    
    
    class TaskAttribute:
        id = graphene.ID()
        _in_time = graphene.String()
        _utime = graphene.String()
        task = graphene.String()
        start_time = graphene.String()
        end_time = graphene.String()
        repeat = graphene.List(graphene.String)
        delete_flag = graphene.Int()
        user = graphene.String()
    
    
    class Task(MongoengineObjectType):
    
        class Meta:
            model = ModelTask
    
    
    class TaskNode(MongoengineObjectType):
        class Meta:
            model = ModelTask
            interfaces = (graphene.relay.Node, )
    
    
    class CreateTaskInput(graphene.InputObjectType, TaskAttribute):
        pass
    
    
    class CreateTask(graphene.Mutation):
    
        task = graphene.Field(lambda: TaskNode)
    
        class Arguments:
            input = CreateTaskInput(required=True)
    
        def mutate(self, info, input):
            task = ModelTask(**input)
            task.save()
            return CreateTask(task=task)
    
    
    class UpdateTask(graphene.Mutation):
    
        task = graphene.Field(lambda: TaskNode)
    
        class Arguments:
            input = CreateTaskInput(required=True)
    
        def mutate(self, info, input):
            id = input.pop("id")
            task = ModelTask.objects.get(id=id)
            task._utime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            task.update(**input)
            task.save()
            return UpdateTask(task=task)
    
    schema_user.py
    from database.model_user import ModelUser
    from graphene_mongo.types import MongoengineObjectType
    import graphene
    from datetime import datetime
    
    
    class UserAttribute:
        id = graphene.String()
        _in_time = graphene.String()
        _utime = graphene.String()
        nickname = graphene.String()
        photo = graphene.String()
        sex = graphene.String()
        delete_flag = graphene.Int()
    
    
    class User(MongoengineObjectType):
    
        class Meta:
            model = ModelUser
    
    
    class UserNode(MongoengineObjectType):
    
        class Meta:
            model = ModelUser
            interfaces = (graphene.relay.Node, )
    
    
    class CreateUserInput(graphene.InputObjectType, UserAttribute):
        pass
    
    
    class CreateUser(graphene.Mutation):
    
        user = graphene.Field(lambda: UserNode)
    
        class Arguments:
            input = CreateUserInput(required=True)
    
        def mutate(self, info, input):
            user = ModelUser(**input)
            user.save()
            return CreateUser(user=user)
    
    
    class UpdateUser(graphene.Mutation):
    
        user = graphene.Field(lambda: UserNode)
    
        class Arguments:
            input = CreateUserInput(required=True)
    
        def mutate(self, info, input):
            id = input.pop("id")
            user = ModelUser.objects.get(id=id)
            user._utime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            user.update(**input)
            user.save()
            return UpdateUser(user=user)
    

    一看代码便知,我们将需要添加的信息,通过input传入进来,然后将对应的参数进行映射即可。我们再通过实例看下创建数据的效果

     
    pic_5.png

    我们再来试下修改数据的操作,like this

     
    pic_6.png

    bingo!!!

    至此,我们通过 GraphQL 搭配 MongoDB 的操作就完美收关了。

    完整项目请查看 github: https://github.com/hacksman/task_graphql_demo

    以上都是自己一路踩过了很多坑之后总结出的方法,如有疏漏,还望指正



    作者:鸡仔说
    链接:https://www.jianshu.com/p/4481a9a791fe
    来源:简书
    简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
  • 相关阅读:
    JS事件
    BOM
    DOM
    常见的SQL字符串函数
    常用的认证方式
    后台代码扫描规则-sonarQube官方
    spring cloud中feign的使用
    常见基于 REST API 认证方式
    Java中连接池
    这是一张心情贴
  • 原文地址:https://www.cnblogs.com/ExMan/p/10790824.html
Copyright © 2011-2022 走看看