zoukankan      html  css  js  c++  java
  • HDU3686 Traffic Real Time Query System

    HDU3686 Traffic Real Time Query System

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 881    Accepted Submission(s): 151


    Problem Description
    City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.
     
    Input
    There are multiple test cases.
    For each test case:
    The first line contains two integers N and M, representing the number of the crossings and roads.
    The next M lines describe the roads. In those M lines, the ith line (i starts from 1)contains two integers Xi and Yi, representing that roadi connects crossing Xi and Yi (Xi≠Yi).
    The following line contains a single integer Q, representing the number of RTQs.
    Then Q lines follows, each describing a RTQ by two integers S and T(S≠T) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.
    The input ends with a line of “0 0”.
    Please note that: 0<N<=10000, 0<M<=100000, 0<Q<=10000, 0<Xi,Yi<=N, 0<S,T<=M 
     
    Output
    For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.
     
    Sample Input
    5 6
    1 2
    1 3
    2 3
    3 4
    4 5
    3 5
    2
    2 3
    2 4
    0 0
     
    Sample Output
    0
    1
    **********************************************************
    题目大意:一个城市有n个路口,m条无向公路。现在要求从第S条路到第T条路必须经过的点有几个。
    解题思路:tarjan求点的双连通分量,然后缩点,然后LCA。
    wa了良久,竟然因为:

    1.题目要求的是从一条路到另一条路的必经点,不是从一个点到另一个点的必经点

    2.这题虽说保证从roadS到roadT一定有路,但没说这个图是连通图,也就是缩点之后有多个树,不是只有一颗树

    注意了上面两点就能AC。苦于因为从wa的代码改过来AC的,代码已经非常搓了。。。。

    #include <map>
    #include <stack>
    #include <queue>
    #include <math.h>
    #include <vector>
    #include <string>
    #include <fstream>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <iostream>
    #include <algorithm>
    #define N 200005
    #define M 100005
    #define E
    #define inf 0x3f3f3f3f
    #define eps 1e-8
    #define LL long long
    #define clr(a,b) memset(a,b,sizeof(a))
    #define D(a) ((a)*(a))
    using namespace std;
    
    struct Node
    {
        int a,id;
        Node(int t1,int t2):a(t1),id(t2){}
    };
    int x[M],y[M],eid[M],me[M];
    int n,m,q,qu[N][2],gp[N],sum[N];
    int num[N],ans[N],vis[N],fa[N],gk[N];
    vector<int>gra[N],tre[N];
    vector<Node>lca[N];
    int dfn[N],low[N],now,gid;
    stack<int>sta;
    stack<Node>ste;
    
    int findfa(int s)
    {
        while(s!=fa[s])s=fa[s];
        return s;
    }
    
    void tarjan(int s,int p)
    {
        dfn[s]=low[s]=++now;
        int flag=0;
        sta.push(s);
        for(int i=0;i<gra[s].size();i++)
        {
            int e=gra[s][i];
            if(me[e])continue;
            me[e]=1;
            int t=x[e];if(t==s)t=y[e];
            ste.push(Node(e,t));
            if(!dfn[t])
            {
                gk[t]=e;
                tarjan(t,s);
                low[s]=min(low[s],low[t]);
                if(low[t]>=dfn[s])
                {
                    if(flag==0)
                    {
                        num[++gid]=s;
                        flag=gp[s]=gid;
                    }
                    ++gid;
                    tre[gp[s]].push_back(gid);
                    tre[gid].push_back(gp[s]);
                    while(!sta.empty())
                    {
                        int k=sta.top();
                        sta.pop();
                        if(gp[k])
                        {
                            int a=gp[k];
                            tre[a].push_back(gid);
                            tre[gid].push_back(a);
                        }
                        else gp[k]=gid;
                        if(k==t)break;
                    }
                    while(!ste.empty())
                    {
                        int ee=ste.top().a,hh=ste.top().id;
                        ste.pop();
                        eid[ee]=gid;
                        if(ee==gk[t])break;
                    }
                }
            }
            low[s]=min(dfn[t],low[s]);
        }
    }
    
    void LCA(int p,int s,int pre)
    {
        sum[p]=s;
        if(num[p])s++;
        for(int i=0;i<tre[p].size();i++)
        {
            int t=tre[p][i];
            if(t!=pre)
            {
                LCA(t,s,p);
                fa[findfa(t)]=p;
            }
        }
        vis[p]=1;
        for(int i=0;i<lca[p].size();i++)
        {
            int t=lca[p][i].a,id=lca[p][i].id;
            if(vis[t])
            {
                int f=fa[findfa(t)];
                ans[id]=sum[p]+sum[t]-2*sum[f];
                if(num[f])ans[id]--;
            }
        }
    }
    
    void re(void)
    {
    	for(int i=1;i<=n;i++)
            gra[i].clear();
        for(int i=1;i<=m;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            x[i]=a;y[i]=b;eid[i]=0;me[i]=0;
            gra[a].push_back(i);
            gra[b].push_back(i);
        }
        scanf("%d",&q);
        for(int i=1;i<=q;i++)
            scanf("%d%d",&qu[i][0],&qu[i][1]);
    }
    
    void run(void)
    {
    	for(int i=1;i<=n;i++)
    	{
    	    dfn[i]=num[i]=gp[i]=gk[i]=0;
    	    tre[i].clear();
    	}
        now=gid=0;
        for(int i=1;i<=n;i++)
            if(!dfn[i])
            {
                while(!sta.empty())sta.pop();
                while(!ste.empty())ste.pop();
                tarjan(i,0);
            }
        for(int i=1;i<=gid;i++)
        {
            lca[i].clear();
            vis[i]=sum[i]=0;
            fa[i]=i;
        }
        for(int i=1;i<=q;i++)
        {
            int a=eid[qu[i][0]],b=eid[qu[i][1]];
            if(a==b)
            {
                ans[i]=0;
                continue;
            }
            lca[a].push_back(Node(b,i));
            lca[b].push_back(Node(a,i));
        }
        for(int i=1;i<=n;i++)
            if(!vis[gp[i]])
                LCA(gp[i],0,-1);
        for(int i=1;i<=q;i++)
            printf("%d\n",ans[i]);
    }
    
    int main()
    {
        while(scanf("%d%d",&n,&m),n+m)
    	{
    		re();
    		run();
    	}
    	return 0;
    }
    

      

    
    
     
  • 相关阅读:
    C++ 引用与常量
    树的三种存储方法
    二叉树 基本运算
    Win10阻止电脑关机时弹出正在关闭应用的方法及恢复
    使用spring+quartz配置多个定时任务(包括项目启动先执行一次,之后再间隔时间执行)
    MySQL为某数据库中所有的表添加相同的字段
    Mysql定时任务详情
    MYSQL存储过程即常用逻辑
    后台发送请求,HttpClient的post,get各种请求,带header的请求
    java后台发送请求获取数据,并解析json数据
  • 原文地址:https://www.cnblogs.com/Fatedayt/p/2393488.html
Copyright © 2011-2022 走看看