zoukankan      html  css  js  c++  java
  • ZOJ 3435 Ideal Puzzle Bobble 莫比乌斯反演

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119

    依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下转化成(0,0,0)~(a-1,b-1,c-1)就和前一题就一样了

    还是莫比乌斯反演求gcd(a,b,c)=1的组数,公式还是sigma{u(d) * ((a/d+1) * (b/d+1) * (c/d+1) - 1)}

    但直接暴力会T...所以加了分块优化...因为当a/d,b/d,c/d的值保持不变的时候...可以跳过很多数据

    所以维护一下miu的前缀和...中间相同的部分就可以直接得出了

    /********************* Template ************************/
    #include <set>
    #include <map>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <bitset>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cassert>
    #include <cstdlib>
    #include <cstring>
    #include <sstream>
    #include <fstream>
    #include <numeric>
    #include <iomanip>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std;
    #define EPS             1e-8
    #define DINF            1e15
    #define MAXN            1000050
    #define MOD             1000000007
    #define INF             0x7fffffff
    #define LINF            1LL<<60
    #define PI              3.14159265358979323846
    #define lson            l,m,rt<<1
    #define rson            m+1,r,rt<<1|1
    #define BUG             cout<<" BUG! "<<endl;
    #define LINE            cout<<" ------------------ "<<endl;
    #define FIN             freopen("in.txt","r",stdin);
    #define FOUT            freopen("out.txt","w",stdout);
    #define mem(a,b)        memset(a,b,sizeof(a))
    #define FOR(i,a,b)      for(int i = a ; i < b ; i++)
    #define read(a)         scanf("%d",&a)
    #define read2(a,b)      scanf("%d%d",&a,&b)
    #define read3(a,b,c)    scanf("%d%d%d",&a,&b,&c)
    #define write(a)        printf("%d
    ",a)
    #define write2(a,b)     printf("%d %d
    ",a,b)
    #define write3(a,b,c)   printf("%d %d %d
    ",a,b,c)
    #pragma comment         (linker,"/STACK:102400000,102400000")
    template<class T> inline T L(T a)       {return (a << 1);}
    template<class T> inline T R(T a)       {return (a << 1 | 1);}
    template<class T> inline T lowbit(T a)  {return (a & -a);}
    template<class T> inline T Mid(T a,T b) {return ((a + b) >> 1);}
    template<class T> inline T gcd(T a,T b) {return b ? gcd(b,a%b) : a;}
    template<class T> inline T lcm(T a,T b) {return a / gcd(a,b) * b;}
    template<class T> inline T Min(T a,T b) {return a < b ? a : b;}
    template<class T> inline T Max(T a,T b) {return a > b ? a : b;}
    template<class T> inline T Min(T a,T b,T c)     {return min(min(a,b),c);}
    template<class T> inline T Max(T a,T b,T c)     {return max(max(a,b),c);}
    template<class T> inline T Min(T a,T b,T c,T d) {return min(min(a,b),min(c,d));}
    template<class T> inline T Max(T a,T b,T c,T d) {return max(max(a,b),max(c,d));}
    template<class T> inline T exGCD(T a, T b, T &x, T &y){
        if(!b) return x = 1,y = 0,a;
        T res = exGCD(b,a%b,x,y),tmp = x;
        x = y,y = tmp - (a / b) * y;
        return res;
    }
    template<class T> inline T reverse_bits(T x){
        x = (x >> 1 & 0x55555555) | ((x << 1) & 0xaaaaaaaa); x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);
        x = (x >> 4 & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);
        x = (x >>16 & 0x0000ffff) | ((x <<16) & 0xffff0000); return x;
    }
    typedef long long LL;    typedef unsigned long long ULL;
    //typedef __int64 LL;      typedef unsigned __int64 ULL;
    
    /*********************   By  F   *********************/
    int T,cnt;
    int prime[MAXN];
    int pri[MAXN];
    int miu[MAXN];
    int sum[MAXN];
    /* 莫比乌斯筛 */
    void pre_miu(){
        miu[1] = 1;
        for(int i = 2 ; i < MAXN ; i++){
            if(!prime[i]){
                miu[i] = -1;
                pri[cnt++] = i;
            }
            for(int j = 0 ; j < cnt && i * pri[j] <= MAXN ; j++){
                prime[i * pri[j]] = 1;
                if(i % pri[j] == 0){
                    miu[i * pri[j]] = 0;
                    break;
                }else miu[i * pri[j]] = -miu[i];
            }
        }
        for(int i = 1 ; i < MAXN ; i++) sum[i] = sum[i-1] + miu[i];
    }
    int main(){
        //FIN;
        //FOUT;
        pre_miu();
        int a,b,c;
        while(~scanf("%d%d%d",&a,&b,&c)){
            a--;b--;c--;
            int m = Max(a,b,c);
            LL res = 0;
            for(int i = 1 ,now = INF ; i <= m ; i = now+1){
                now = Min(a/i ? a/(a/i) : INF , b/i ? b/(b/i) : INF , c/i ? c/(c/i) : INF);
                res += ((LL)(a/now+1) * (LL)(b/now+1) * (LL)(c/now+1) - 1) * (sum[now] - sum[i-1]);
            }
            printf("%lld
    ",res);
        }
        return 0;
    }
  • 相关阅读:
    Nginx的访问控制
    远程登录
    Linux的网络命令
    laravel-collect
    laravel-model
    laravel-Macroable
    laravel-容器
    机器学习-Logisitic回归
    机器学习-多变量线性回归
    算法笔记-分支界限法
  • 原文地址:https://www.cnblogs.com/Felix-F/p/3354375.html
Copyright © 2011-2022 走看看