zoukankan      html  css  js  c++  java
  • Common Subsequence

    Common Subsequence

    http://poj.org/problem?id=1458

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 63836   Accepted: 26653

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    Source

     
     
     1 #include<iostream>
     2 #include<cmath>
     3 #include<cstring>
     4 #include<cstdio>
     5 #include<algorithm>
     6 using namespace std;
     7 int dp[5005][5005];
     8 char m[5005],n[5005];
     9 int main(){
    10     while(~scanf("%s %s%*c",n,m)){
    11         int len1=strlen(n);
    12         int len2=strlen(m);
    13         for(int i=0;i<=len1;i++){
    14             dp[i][0]=0;
    15         }
    16         for(int j=0;j<=len2;j++){
    17             dp[0][j]=0;
    18         }
    19         for(int i=1;i<=len1;i++){
    20             for(int j=1;j<=len2;j++){
    21                 if(n[i-1]==m[j-1]){
    22                     dp[i][j]=dp[i-1][j-1]+1;
    23                 }
    24                 else{
    25                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    26                 }
    27             }
    28         }
    29         printf("%d
    ",dp[len1][len2]);
    30     }
    31 }
    View Code
  • 相关阅读:
    架构与模式11
    Unix/Linux命令
    Winform的Excel表格
    B/S结构一机多屏实现
    Effective C++函数参数传递方式
    Django & Tornado
    ThoughtWorks读书路线图
    善用泛型 委托
    SQL 关于with cube ,with rollup 和 grouping
    测试工程师实习笔试题
  • 原文地址:https://www.cnblogs.com/Fighting-sh/p/10094629.html
Copyright © 2011-2022 走看看