zoukankan      html  css  js  c++  java
  • GCD(欧拉函数)

    GCD

    http://acm.hdu.edu.cn/showproblem.php?pid=2588

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3782    Accepted Submission(s): 2053


    Problem Description
    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
    (a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
    Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
     
    Input
    The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
     
    Output
    For each test case,output the answer on a single line.
     
    Sample Input
    3
    1 1
    10 2
    10000 72
     
    Sample Output
    1
    6
    260
     
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define lson l,mid,rt<<1
     4 #define rson mid+1,r,rt<<1|1
     5 #define IT set<ll>::iterator
     6 #define pb push_back
     7 #define eb emplace_back
     8 #define maxn 200005
     9 #define eps 1e-6
    10 #define PI acos(-1.0)
    11 #define rep(k,i,j) for(int k=i;k<j;k++)
    12 typedef long long ll;
    13 typedef pair<int,int> pii;
    14 typedef pair<ll,ll>pll;
    15 typedef pair<ll,int> pli;
    16 typedef pair<pair<int,string>,pii> ppp;
    17 typedef unsigned long long ull;
    18 const long long MOD=1000000007;
    19 const double oula=0.57721566490153286060651209;
    20 const int INF=0x3f3f3f3f;
    21 using namespace std;
    22 
    23 
    24 ll Euler(ll n){
    25     ll ans=n;
    26     for(ll i=2;i*i<=n;i++){
    27         if(n%i==0) ans=ans/i*(i-1);
    28         while(n%i==0) n/=i;
    29     }
    30     if(n>1) ans=ans/n*(n-1);
    31     return ans;
    32 }
    33 
    34 int main(){
    35     std::ios::sync_with_stdio(false);
    36     int t;
    37     cin>>t;
    38     while(t--){
    39         ll n,m;
    40         cin>>n>>m;
    41         ll ans=0;
    42         for(int i=1;i*i<=n;i++){
    43             if(n%i==0){
    44                 if(i>=m) ans+=Euler(n/i);
    45                 if(i*i!=n&&n/i>=m) ans+=Euler(i);
    46             }
    47         }
    48         cout<<ans<<endl;
    49     }
    50 }
    View Code
  • 相关阅读:
    luoguP3822 [NOI2017]整数
    luoguP2150 [NOI2015]寿司晚宴
    luoguP3868 [TJOI2009]猜数字
    luoguP4777 【模板】扩展中国剩余定理(EXCRT)
    luoguP2048 超级钢琴
    题解 P1004 【方格取数】
    戊戌年西安游记
    题解 P4388 【付公主的矩形】
    题解 P4277 【河城荷取的烟花】
    001 dynamic Linq
  • 原文地址:https://www.cnblogs.com/Fighting-sh/p/10726914.html
Copyright © 2011-2022 走看看