zoukankan      html  css  js  c++  java
  • Petya and Array (权值线段树+逆序对)

    Petya and Array 

    http://codeforces.com/problemset/problem/1042/D

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Petya has an array aa consisting of nn integers. He has learned partial sums recently, and now he can calculate the sum of elements on any segment of the array really fast. The segment is a non-empty sequence of elements standing one next to another in the array.

    Now he wonders what is the number of segments in his array with the sum less than tt. Help Petya to calculate this number.

    More formally, you are required to calculate the number of pairs l,rl,r (lrl≤r) such that al+al+1++ar1+ar<tal+al+1+⋯+ar−1+ar<t.

    Input

    The first line contains two integers nn and tt (1n200000,|t|210141≤n≤200000,|t|≤2⋅1014).

    The second line contains a sequence of integers a1,a2,,ana1,a2,…,an (|ai|109|ai|≤109) — the description of Petya's array. Note that there might be negative, zero and positive elements.

    Output

    Print the number of segments in Petya's array with the sum of elements less than tt.

    Examples
    input
    5 4
    5 -1 3 4 -1
    output
    5
    input
    3 0
    -1 2 -3
    output
    4
    input
    4 -1
    -2 1 -2 3
    output
    3
    Note

    In the first example the following segments have sum less than 44:

    • [2,2][2,2], sum of elements is 1−1
    • [2,3][2,3], sum of elements is 22
    • [3,3][3,3], sum of elements is 33
    • [4,5][4,5], sum of elements is 33
    • [5,5][5,5], sum of elements is 1

      参考博客 http://mamicode.com/info-detail-2452129.html

      找区间和小于t的个数,区间和的问题,一般用前缀和来做

      可以看成sum[i]>t+sum[k]的个数,i<k<=n。这样就变成了一个逆序对的问题

      

      1 #include<iostream>
      2 #include<cstring>
      3 #include<string>
      4 #include<cmath>
      5 #include<algorithm>
      6 #include<queue>
      7 #include<cstdio>
      8 #include<vector>
      9 #define maxn 500005
     10 #define lson l,mid,rt<<1
     11 #define rson mid+1,r,rt<<1|1
     12 typedef long long ll;
     13 using namespace std;
     14 
     15 vector<ll>v;
     16 ll n;
     17 ll a[maxn];
     18 ll sum[maxn];
     19 
     20 int tree[maxn<<3];
     21 
     22 int getid(ll x){
     23     return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
     24 }
     25 
     26 void pushup(int rt){
     27     tree[rt]=tree[rt<<1]+tree[rt<<1|1];
     28 }
     29 
     30 void build(int l,int r,int rt){
     31     if(l==r){
     32         tree[rt]=0;
     33         return;
     34     }
     35     int mid=(l+r)/2;
     36     build(lson);
     37     build(rson);
     38     pushup(rt);
     39 }
     40 
     41 void add(int L,int k,int l,int r,int rt){
     42     if(l==r){
     43         tree[rt]+=k;
     44         return;
     45     }
     46     int mid=(l+r)/2;
     47     if(L<=mid) add(L,k,lson);
     48     else add(L,k,rson);
     49     pushup(rt);
     50 }
     51 
     52 ll query(int L,int R,int l,int r,int rt){
     53     if(L<=l&&R>=r){
     54         return tree[rt];
     55     }
     56     int mid=(l+r)/2;
     57     ll ans=0;
     58     if(L<=mid) ans+=query(L,R,lson);
     59     if(R>mid) ans+=query(L,R,rson);
     60     return ans;
     61 }
     62 
     63 
     64 int main(){
     65 
     66     std::ios::sync_with_stdio(false);
     67     ll t;
     68     cin>>n>>t;
     69     for(int i=1;i<=n;i++){
     70         cin>>a[i];
     71     }
     72     v.push_back(t-1);
     73     for(int i=1;i<=n;i++){
     74         sum[i]=a[i]+sum[i-1];
     75         v.push_back(sum[i]);
     76         v.push_back(sum[i]+t-1);
     77     }
     78     if(n==1){
     79         if(a[1]<t){
     80             cout<<1<<endl;
     81         }
     82         else{
     83             cout<<0<<endl;
     84         }
     85     }
     86     else{
     87         sort(v.begin(),v.end());
     88         v.erase(unique(v.begin(),v.end()),v.end());
     89         int Size=v.size();
     90         build(1,Size,1);
     91         add(getid(sum[n]),1,1,Size,1);
     92         ll ans=0;
     93         for(int i=n-1;i>=1;i--){
     94             ans+=query(1,getid(sum[i]+t-1),1,Size,1);
     95             add(getid(sum[i]),1,1,Size,1);
     96         }
     97         ans+=query(1,getid(t-1),1,Size,1);
     98 
     99         cout<<ans<<endl;
    100     }
    101 
    102 }
    View Code

      

  • 相关阅读:
    在C#中internal、protected internal关键字是什么意思?
    JScript版CollectionBase类的一个实现
    js继承的4种方法
    ASP删除文章时,需要删除eWebEditor上传文件
    Sql Server 2005中的架构(Schema)、用户(User)、登录(Login)和角色(Role)
    js绘图研究(一)
    JavaScript中this关键字使用方法详解
    SQL SERVER中架构的理解
    利用 wz_jsgraphics.js 画线
    js种4种继承法的优缺点
  • 原文地址:https://www.cnblogs.com/Fighting-sh/p/9719751.html
Copyright © 2011-2022 走看看