zoukankan      html  css  js  c++  java
  • 转载:深入浅出Zookeeper

    ZAB协议

      1. ZAB协议是专门为zookeeper实现分布式协调功能而设计。zookeeper主要是根据ZAB协议是实现分布式系统数据一致性。
      2. zookeeper根据ZAB协议建立了主备模型完成zookeeper集群中数据的同步。这里所说的主备系统架构模型是指,在zookeeper集群中,只有一台leader负责处理外部客户端的事物请求(或写操作),然后leader服务器将客户端的写操作数据同步到所有的follower节点中。 
        这里写图片描述
      3. ZAB的协议核心是在整个zookeeper集群中只有一个节点即Leader将客户端的写操作转化为事物(或提议proposal)。Leader节点再数据写完之后,将向所有的follower节点发送数据广播请求(或数据复制),等待所有的follower节点反馈。在ZAB协议中,只要超过半数follower节点反馈OK,Leader节点就会向所有的follower服务器发送commit消息。即将leader节点上的数据同步到follower节点之上。 
      4.  ZAB协议中主要有两种模式,第一是消息广播模式;第二是崩溃恢复模式

              

    消息广播模式

      1. 在zookeeper集群中数据副本的传递策略就是采用消息广播模式。zookeeper中数据副本的同步方式与二阶段提交相似但是却又不同。二阶段提交的要求协调者必须等到所有的参与者全部反馈ACK确认消息后,再发送commit消息。要求所有的参与者要么全部成功要么全部失败。二阶段提交会产生严重阻塞问题。
      2. ZAB协议中Leader等待follower的ACK反馈是指”只要半数以上的follower成功反馈即可,不需要收到全部follower反馈”
      3. 图中展示了消息广播的具体流程图 
        这里写图片描述
      4. zookeeper中消息广播的具体步骤如下: 
        4.1. 客户端发起一个写操作请求 
        4.2. Leader服务器将客户端的request请求转化为事物proposql提案,同时为每个proposal分配一个全局唯一的ID,即ZXID。 
        4.3. leader服务器与每个follower之间都有一个队列,leader将消息发送到该队列 
        4.4. follower机器从队列中取出消息处理完(写入本地事物日志中)毕后,向leader服务器发送ACK确认。 
        4.5. leader服务器收到半数以上的follower的ACK后,即认为可以发送commit 
        4.6. leader向所有的follower服务器发送commit消息。
      5. zookeeper采用ZAB协议的核心就是只要有一台服务器提交了proposal,就要确保所有的服务器最终都能正确提交proposal。这也是CAP/BASE最终实现一致性的一个体现。
      6. leader服务器与每个follower之间都有一个单独的队列进行收发消息,使用队列消息可以做到异步解耦。leader和follower之间只要往队列中发送了消息即可。如果使用同步方式容易引起阻塞。性能上要下降很多。

    崩溃恢复

    1. zookeeper集群中为保证任何所有进程能够有序的顺序执行,只能是leader服务器接受写请求,即使是follower服务器接受到客户端的请求,也会转发到leader服务器进行处理。
    2. 如果leader服务器发生崩溃,则zab协议要求zookeeper集群进行崩溃恢复和leader服务器选举。
    3. ZAB协议崩溃恢复要求满足如下2个要求: 
      3.1. 确保已经被leader提交的proposal必须最终被所有的follower服务器提交。 
      3.2. 确保丢弃已经被leader出的但是没有被提交的proposal。
    4. 根据上述要求,新选举出来的leader不能包含未提交的proposal,即新选举的leader必须都是已经提交了的proposal的follower服务器节点。同时,新选举的leader节点中含有最高的ZXID。这样做的好处就是可以避免了leader服务器检查proposal的提交和丢弃工作。
    5. leader服务器发生崩溃时分为如下场景: 
      5.1. leader在提出proposal时未提交之前崩溃,则经过崩溃恢复之后,新选举的leader一定不能是刚才的leader。因为这个leader存在未提交的proposal。 
      5.2 leader在发送commit消息之后,崩溃。即消息已经发送到队列中。经过崩溃恢复之后,参与选举的follower服务器(刚才崩溃的leader有可能已经恢复运行,也属于follower节点范畴)中有的节点已经是消费了队列中所有的commit消息。即该follower节点将会被选举为最新的leader。剩下动作就是数据同步过程。

    数据同步

    1. 在zookeeper集群中新的leader选举成功之后,leader会将自身的提交的最大proposal的事物ZXID发送给其他的follower节点。follower节点会根据leader的消息进行回退或者是数据同步操作。最终目的要保证集群中所有节点的数据副本保持一致。
    2. 数据同步完之后,zookeeper集群如何保证新选举的leader分配的ZXID是全局唯一呢?这个就要从ZXID的设计谈起。 
      2.1 ZXID是一个长度64位的数字,其中低32位是按照数字递增,即每次客户端发起一个proposal,低32位的数字简单加1。高32位是leader周期的epoch编号,至于这个编号如何产生(我也没有搞明白),每当选举出一个新的leader时,新的leader就从本地事物日志中取出ZXID,然后解析出高32位的epoch编号,进行加1,再将低32位的全部设置为0。这样就保证了每次新选举的leader后,保证了ZXID的唯一性而且是保证递增的。 
      这里写图片描述

     

    ZAB协议原理

    1. ZAB协议要求每个leader都要经历三个阶段,即发现,同步,广播。
    2. 发现:即要求zookeeper集群必须选择出一个leader进程,同时leader会维护一个follower可用列表。将来客户端可以这follower中的节点进行通信。
    3. 同步:leader要负责将本身的数据与follower完成同步,做到多副本存储。这样也是体现了CAP中高可用和分区容错。follower将队列中未处理完的请求消费完成后,写入本地事物日志中。
    4. 广播:leader可以接受客户端新的proposal请求,将新的proposal请求广播给所有的follower。

    Zookeeper设计目标

      1. zookeeper作为当今最流行的分布式系统应用协调框架,采用zab协议的最大目标就是建立一个高可用可扩展的分布式数据主备系统。即在任何时刻只要leader发生宕机,都能保证分布式系统数据的可靠性和最终一致性。
      2. 深刻理解ZAB协议,才能更好的理解zookeeper对于分布式系统建设的重要性。以及为什么采用zookeeper就能保证分布式系统中数据最终一致性,服务的高可用性。

    这篇主要分析leader的选主机制,zookeeper提供了三种方式:

    • LeaderElection
    • AuthFastLeaderElection
    • FastLeaderElection

    默认的算法是FastLeaderElection,所以这篇主要分析它的选举机制。

    选择机制中的概念

    服务器ID

    比如有三台服务器,编号分别是1,2,3。

    编号越大在选择算法中的权重越大。

    数据ID

    服务器中存放的最大数据ID.

    值越大说明数据越新,在选举算法中数据越新权重越大。

    逻辑时钟

    或者叫投票的次数,同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加,然后与接收到的其它服务器返回的投票信息中的数值相比,根据不同的值做出不同的判断。

    选举状态

    • LOOKING,竞选状态。
    • FOLLOWING,随从状态,同步leader状态,参与投票。
    • OBSERVING,观察状态,同步leader状态,不参与投票。
    • LEADING,领导者状态。

    选举消息内容

    在投票完成后,需要将投票信息发送给集群中的所有服务器,它包含如下内容。

    • 服务器ID
    • 数据ID
    • 逻辑时钟
    • 选举状态

    选举流程图

    因为每个服务器都是独立的,在启动时均从初始状态开始参与选举,下面是简易流程图。

     

     

    下面详细解释一下这个流程:

    首先给出几个名词定义:

    (1)Serverid:在配置server时,给定的服务器的标示id。

    (2)Zxid:服务器在运行时产生的数据id,zxid越大,表示数据越新。

    (3)Epoch:选举的轮数,即逻辑时钟。随着选举的轮数++

    (4)Server状态:LOOKING,FOLLOWING,OBSERVING,LEADING

    步骤:

    一、  Server刚启动(宕机恢复或者刚启动)准备加入集群,此时读取自身的zxid等信息。

    二、  所有Server加入集群时都会推荐自己为leader,然后将(leader id 、 zixd 、 epoch)作为广播信息,广播到集群中所有的服务器(Server)。然后等待集群中的服务器返回信息。

    三、  收到集群中其他服务器返回的信息,此时要分为两类:该服务器处于looking状态,或者其他状态。

    (1)    服务器处于looking状态

    首先判断逻辑时钟 Epoch:

    a)     如果接收到Epoch大于自己目前的逻辑时钟(说明自己所保存的逻辑时钟落伍了)。更新本机逻辑时钟Epoch,同时 Clear其他服务发送来的选举数据(这些数据已经OUT了)。然后判断是否需要更新当前自己的选举情况(一开始选择的leader id 是自己)

        判断规则rules judging:保存的zxid最大值和leader Serverid来进行判断的。先看数据zxid,数据zxid大者胜出;其次再判断leaderServerid, leader Serverid大者胜出;然后再将自身最新的选举结果(也就是上面提到的三种数据(leader Serverid,Zxid,Epoch)广播给其他server)

    b)     如果接收到的Epoch小于目前的逻辑时钟。说明对方处于一个比较OUT的选举轮数,这时只需要将自己的 (leader Serverid,Zxid,Epoch)发送给他即可。

    c)     如果接收到的Epoch等于目前的逻辑时钟。再根据a)中的判断规则,将自身的最新选举结果广播给其他 server。

    同时Server还要处理2种情况:

    a)    如果Server接收到了其他所有服务器的选举信息,那么则根据这些选举信息确定自己的状态(Following,Leading),结束Looking,退出选举。

    b)   即使没有收到所有服务器的选举信息,也可以判断一下根据以上过程之后最新的选举leader是不是得到了超过半数以上服务器的支持,如果是则尝试接受最新数据,倘若没有最新的数据到来,说明大家都已经默认了这个结果,同样也设置角色退出选举过程。

    (2)    服务器处于其他状态(Following, Leading)

    a)     如果逻辑时钟Epoch相同,将该数据保存到recvset,如果所接收服务器宣称自己是leader,那么将判断是不是有半数以上的服务器选举它,如果是则设置选举状态退出选举过程

    b)     否则这是一条与当前逻辑时钟不符合的消息,那么说明在另一个选举过程中已经有了选举结果,于是将该选举结果加入到outofelection集合中,再根据outofelection来判断是否可以结束选举,如果可以也是保存逻辑时钟,设置选举状态,退出选举过程。

    以上就是FAST选举过程。

     转载至 https://blog.csdn.net/a724888/article/details/80757503 感觉应该是全网最好的了。

  • 相关阅读:
    Oracle-函数
    Oracle-存储过程
    Linux-文件系统概述
    Oralce-PL/SQL编程-游标
    Oracle -操作数据库
    Oralce常用系统函数
    SQL语言基础-基本概念
    Linux-进程管理
    Linux-用户管理
    shell里的IFS内置环境变量
  • 原文地址:https://www.cnblogs.com/FlyAway2013/p/10203256.html
Copyright © 2011-2022 走看看