zoukankan      html  css  js  c++  java
  • Codeforces 1073C:Vasya and Robot(二分)

    C. Vasya and Robot

    time limit per test: 1 second
    memory limit per test: 256 megabytes
    input: standard input
    output: standard output

    Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell (0,0)(0,0). Robot can perform the following four kinds of operations:

    • U — move from (x,y)(x,y) to (x,y+1)(x,y+1);
    • D — move from (x,y)(x,y) to (x,y1)(x,y−1);
    • L — move from (x,y)(x,y) to (x1,y)(x−1,y);
    • R — move from (x,y)(x,y) to (x+1,y)(x+1,y).

    Vasya also has got a sequence of nn operations. Vasya wants to modify this sequence so after performing it the robot will end up in (x,y)(x,y).

    Vasya wants to change the sequence so the length of changed subsegment is minimum possible. This length can be calculated as follows: maxIDminID+1maxID−minID+1, where maxIDmaxID is the maximum index of a changed operation, and minIDminID is the minimum index of a changed operation. For example, if Vasya changes RRRRRRR to RLRRLRL, then the operations with indices 2,52, 5 and 77 are changed, so the length of changed subsegment is 72+1=67−2+1=6. Another example: if Vasya changes DDDD to DDRD, then the length of changed subsegment is 11.

    If there are no changes, then the length of changed subsegment is 00. Changing an operation means replacing it with some operation (possibly the same); Vasya can’t insert new operations into the sequence or remove them.

    Help Vasya! Tell him the minimum length of subsegment that he needs to change so that the robot will go from (0,0)(0,0) to (x,y)(x,y), or tell him that it’s impossible.

    Input

    The first line contains one integer number n(1n2105)n (1≤n≤2⋅10^5) — the number of operations.

    The second line contains the sequence of operations — a string of nn characters. Each character is either U, D, L or R.

    The third line contains two integers x,y(109x,y109)x,y (−10^9≤x,y≤10^9) — the coordinates of the cell where the robot should end its path.

    Output

    Print one integer — the minimum possible length of subsegment that can be changed so the resulting sequence of operations moves the robot from (0,0)(0,0) to (x,y)(x,y). If this change is impossible, print 1−1.

    Examples

    input

    5
    RURUU
    -2 3
    

    output

    3
    

    input

    4
    RULR
    1 1
    

    output

    0
    

    input

    3
    UUU
    100 100
    

    output

    -1
    

    Note

    In the first example the sequence can be changed to LULUU. So the length of the changed subsegment is 31+1=33−1+1=3.

    In the second example the given sequence already leads the robot to (x,y)(x,y), so the length of the changed subsegment is 00.

    In the third example the robot can’t end his path in the cell (x,y)(x,y).

    题意

    一个机器人从(0,0)(0,0)点出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假设改变 字符串的最大下标为maxIDmaxID ,改变字符串的最小下标为minIDminID ,输出最小的 maxIDminID+1maxID-minID+1 ,即,输出最小的改变字符串的连续区间长度(该区间内的字符不一定要全部发生改变)

    Solve

    字符串长度小于原点到指定位置的距离,字符串长度与原点到指定位置具有不同的奇偶性。在这两种情况下,是无论如何都无法到达指定位置的。其余情况都一定有答案。

    因为是要求区间的长度,所以二分枚举区间长度,对于每个区间长度尺取,找出所有可达的情况。如果某个区间长度可行,尝试去缩小当前区间长度;否则,延长区间长度

    Code

    /*************************************************************************
        > File Name: C.cpp
        > Author: WZY
        > Created Time: 2019年02月15日 15:39:58
     ************************************************************************/
    
    #include<bits/stdc++.h>
    #define ll long long
    #define ull unsigned long long
    #define ms(a,b) memset(a,b,sizeof(a))
    #define pi acos(-1.0)
    #define INF 0x7f7f7f7f
    const double E=exp(1);
    const int maxn=1e6+10;
    const int mod=1e9+7;
    using namespace std;
    char ch[maxn];
    int sumx[maxn],sumy[maxn];
    int n;
    int x,y;
    // 判断区间是否可行
    bool check(int len)
    {
    	for(int l=1;l+len-1<=n;l++)
    	{
    		int r=l+len-1;
    		// 不需要改变的指令个数
    		int _x=sumx[l-1]+sumx[n]-sumx[r];
    		int _y=sumy[l-1]+sumy[n]-sumy[r];
    		// 计算当前点到指定点的距离
    		int sum=abs(_x-x)+abs(_y-y);
    		// 当前点到指定点的距离<=len并且多走的路程可以两两抵消
    		if(sum<=len&&(len-sum)%2==0)
    			return true;
    	}
    	return false;
    }
    int main(int argc, char const *argv[])
    {
    	ios::sync_with_stdio(false);
    	cin.tie(0);
    	cin>>n;
    	cin>>(ch+1);
    	cin>>x>>y;
    	for(int i=1;i<=n;i++)
    	{
    		if(ch[i]=='R')
    			sumx[i]=sumx[i-1]+1,sumy[i]=sumy[i-1];
    		else if(ch[i]=='L')
    			sumx[i]=sumx[i-1]-1,sumy[i]=sumy[i-1];
    		else if(ch[i]=='U')
    			sumx[i]=sumx[i-1],sumy[i]=sumy[i-1]+1;
    		else 
    			sumx[i]=sumx[i-1],sumy[i]=sumy[i-1]-1;
    	}
    	int ans,l,r;
    	l=0,r=n;
    	ans=-1;
    	while(l<=r)
    	{
    		int mid=(l+r)/2;
    		if(check(mid))
    			ans=mid,r=mid-1;
    		else
    			l=mid+1; 
    	}
    	cout<<ans<<endl;
    	return 0;
    }
    
  • 相关阅读:
    类型检查-类型表达式:类型系统是一种逻辑系统
    计算机程序是建立在计算机硬件和一系列规则、协议、规范、算法基础之上的;
    类型的基石:数据类型、函数类型
    类型安全
    类型检查-类型系统
    动态类型-类型绑定
    类型安全与类型检查是什么?
    怎样写一个新编程语言
    同名的cookie会不会存在多个
    php array_map与array_walk使用对比
  • 原文地址:https://www.cnblogs.com/Friends-A/p/11054966.html
Copyright © 2011-2022 走看看