zoukankan      html  css  js  c++  java
  • 最近公共祖先 LCA 倍增算法

    倍增算法可以在线求树上两个点的LCA,时间复杂度为nlogn

    预处理:通过dfs遍历,记录每个节点到根节点的距离dist[u],深度d[u]

    init()求出树上每个节点u的2^i祖先p[u][i]

    求最近公共祖先,根据两个节点的的深度,如不同,向上调整深度大的节点,使得两个节点在同一层上,如果正好是祖先结束,否则,将连个节点同时上移,查询最近公共祖先。

    void dfs(int u){
        for(int i=head[u];i!=-1;i=edge[i].next){
            int to=edge[i].to;
            if(to==p[u][0])continue;
            d[to]=d[u]+1;
            dist[to]=dist[u]+edge[i].w;
            p[to][0]=u; //p[i][0]存i的父节点
            dfs(to); 
        }
    }

    i的2^j祖先就是i的(2^(j-1))祖先的2^(j-1)祖先:

    void init(){
        for(int j=1;(1<<j)<=n;j++){
            for(int i=1;i<=n;i++){
                p[i][j]=p[p[i][j-1]][j-1];
            }
        }
    }

    LCA:

    int lca(int a,int b){
        if(d[a]>d[b])swap(a,b); //b在下面 
        int f=d[b]-d[a];//f是高度差
        for(int i=0;(1<<i)<=f;i++){//(1<<i)&f找到f化为2进制后1的位置,移动到相应的位置
            if((1<<i)&f)b=p[b][i];//比如f=5(101),先移动2^0祖先,然后再移动2^2祖先
        }
        if(a!=b){
            for(int i=(int)log2(N);i>=0;i--){
                if(p[a][i]!=p[b][i]){//从最大祖先开始,判断a,b祖先,是否相同
                    a=p[a][i]; b=p[b][i];//如不相同,a b同时向上移动2^j
                }
            }
            a=p[a][0];//这时a的father就是LCA
        }
        return a;
    }
  • 相关阅读:
    angularjs基础——控制器
    angularjs基础——变量绑定
    mysql 小数处理
    centos无法联网解决方法
    mysql 按 in 顺序排序
    html5 file 自定义文件过滤
    淘宝、天猫装修工具
    MapGis如何实现WebGIS分布式大数据存储的
    CentOS
    PHP与Python哪个做网站产品好?
  • 原文地址:https://www.cnblogs.com/FuTaimeng/p/5655616.html
Copyright © 2011-2022 走看看