zoukankan      html  css  js  c++  java
  • 【2021夏纪中游记】2021.7.16模拟赛

    2021.7.16模拟赛

    比赛概括:

    (mathrm{sum}=10+30+0+100)

    唉,我果然只是暴力选手。

    T1 【BZOJ 4131】并行博弈:

    题目大意:

    在一个 (n imes m) 的棋盘上,选择一个黑点可使得矩阵 ((1,1,x,y)) 翻转。无法操作的人败。问 (k) 组棋盘一起下,是否先手必胜。

    思路:

    先手最优一定是选一直选棋盘的左上角,所以统计左上角是 (1) 的个数,询问是否是奇数。证明不会,看来得增加博弈论的知识储备。

    代码:

    inline ll Read()
    {
    	ll x = 0, f = 1;
    	char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = -f, c = getchar();
    	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
    	return x * f;
    }
    
    
    int k, n, m;
    
    int main()
    {
    	for (int T = Read(); T--; )
    	{
    		k = Read();
    		int ans = 0; 
    		for (int t = 1; t <= k; t++)
    		{
    			n = Read(), m = Read();
    			for (int i = 1; i <= n; i++)
    				for (int j = 1; j <= m; j++)
    				{
    					int x = Read();
    					if (i == 1 && j == 1) 
    						ans ^= x;
    				}
    		}
    		puts(!ans? "ld win": "lyp win");
    	}
    	return 0;
    }
    

    T2 图书馆:

    题目大意:

    在一个 DAG 找到一条长度不到 (20)(s ightarrow t) 的路径,使得路径方差最小。

    思路:

    先化方差:

    [egin{aligned} sigma^2&=frac{1}{n}sum_{i=1}^n(a_i-ar{a})^2\ &=frac{1}{n}sum_{i=1}^n(a_i^2-2a_iar{a}+ar{a}^2)\ &=frac{1}{n}sum_{i=1}^n(a_i^2-2a_iar{a})+ar{a}^2\ &=frac{1}{n}sum_{i=1}^na_i^2-frac{1}{n}sum_{i=1}^n2a_iar{a}+ar{a}^2\ &=frac{1}{n}sum_{i=1}^na_i^2-2ar{a}^2+ar{a}^2\ &=frac{1}{n}sum_{i=1}^na_i^2-ar{a}^2\ end{aligned} ]

    然后设 (f_{i,j,k}) 表示当前在 (i) 楼梯,已经走了 (j) 个楼梯,且消耗了 (k) 体力的最小体力平方和。则有:

    [f_{u,j,k}=min_{v o u,mathrm{val}}{f_{v,j-1,k-mathrm{val}}+mathrm{val}^2} ]

    统计答案时把 (f_{i,j,k}) 代回去就行了。

    代码:

    const int N = 60, M = 310, V = 1010;
    
    inline ll Read()
    {
    	ll x = 0, f = 1;
    	char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = -f, c = getchar();
    	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
    	return x * f;
    }
    
    int n, m;
    int f[N][M][V];
    
    struct edge
    {
    	int to, val, nxt;
    }e[M];
    int head[N], tot;
    void add(int u, int v, int w)
    {
    	e[++tot] = (edge) {v, w, head[u]}, head[u] = tot;
    }
    
    int main()
    {
    	freopen("library.in", "r", stdin);
    	freopen("library.out", "w", stdout);
    	memset (f, 127 / 3, sizeof f);
    	n = Read(), m = Read();
    	for (int i = 1; i <= m; i++)
    	{
    		int u = Read(), v = Read(), w = Read();
    		add(u, v, w);
    	}
    	f[1][0][0] = 0;
    	
    	for (int len = 0; len < 19; len++)
    		for (int u = 1; u < n; u++)
    			for (int i = head[u]; i; i = e[i].nxt)
    			{
    				int v = e[i].to;
    					for (int sum = 0; sum <= 1000; sum++)
    						f[v][len + 1][sum + e[i].val] = 
    						    min(f[v][len + 1][sum + e[i].val], f[u][len][sum] + e[i].val * e[i].val);
    			}
    		
    	double ans = 1e9;
    	for (int j = 1; j <= 20; j++)
    		for (int k = 0; k <= 1000; k++)
    			if (f[n][j][k] < f[0][0][0])
    				ans = min(ans, f[n][j][k] * 1.0 / j - (k * k * 1.0 / j / j));
    	printf ("%.4f", ans);
    	return 0;
    }
    

    T3 [GDOI2017]小学生语文题:

    题目大意:

    将字符串 (t) 中的一些字符往前移动若干位得到 (s),求次数及方案。

    正文:

    (f_{i,j}) 表示 (s) 串中 ([i,n])(t)([j,n]) 匹配(有可能有剩余的)的最小次数。

    则分三部分:

    1. (s_i=t_j),直接往前跳,(f_{i,j}=f_{i+1,j+1})
    2. (s_i e t_j) 但是 (t)([j,n]) 中的字符 (s_i) 的数量大于 (s)([i,n]),则说明 (t) 中可以移动一个字符 (s_i)(f_{i,j}=f_{i+1,j})
    3. (t) 串中不够,(f_{i,j}=f_{i+1,j+1}+1)

    顺便维护 (g_{i,j,[0,1]}) 表示 (f_{i,j}) 从哪两个点转移过来的。

    然后从 (1,1) 往后跳,把不定点排除,枚举剩下的点即可。

    代码:

    const int N = 2010;
    
    inline ll Read()
    {
    	ll x = 0, f = 1;
    	char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = -f, c = getchar();
    	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
    	return x * f;
    }
    
    int T, n;
    char s[N], t[N];
    int a[30][N], b[30][N];
    int f[N][N], g[N][N][2];
    
    bool NoMoveA[N], NoMoveB[N];
    
    int main()
    {
    	freopen("chinese.in", "r", stdin);
    	freopen("chinese.out", "w", stdout);
    	for (T = Read(); T--;)
    	{
    		scanf ("%s%s", s + 1, t + 1);
    		memset (a, 0, sizeof a);
    		memset (b, 0, sizeof b);
    		memset (NoMoveA, 0, sizeof NoMoveA);
    		memset (NoMoveB, 0, sizeof NoMoveB);
    		n = strlen(s + 1);
    		for (int i = n; i; i--)
    		{
    			a[s[i] - 'a'][i] = 1, b[t[i] - 'a'][i] = 1;
    			for (int j = 0; j < 26; j++) a[j][i] += a[j][i + 1], b[j][i] += b[j][i + 1];
    		}
    		memset (f, 127 / 3, sizeof f);
    		f[n + 1][n + 1] = 0;
    		for (int j = n; j; j--) f[n + 1][j] = f[n + 1][j + 1] + 1;
    		for (int i = n; i; i--)
    		{
    			for (int j = n; j; j--)
    			{
    				if (f[i][j] > f[i + 1][j] && a[s[i] - 'a'][i + 1] < b[s[i] - 'a'][j])
    					f[i][j] = f[i + 1][j], g[i][j][0] = i + 1, g[i][j][1] = j;
    				
    				if (f[i][j] > f[i + 1][j + 1] && s[i] == t[j])
    					f[i][j] = f[i + 1][j + 1], g[i][j][0] = i + 1, g[i][j][1] = j + 1;
    				
    				if (f[i][j] > f[i][j + 1] + 1)
    					f[i][j] = f[i][j + 1] + 1, g[i][j][0] = i, g[i][j][1] = j + 1;
    			}
    		}
    		printf ("%d
    ", f[1][1]);
    		
    		int x = 1, y = 1;
    		while (x <= n && y <= n)
    		{
    			int nxtx = g[x][y][0], nxty = g[x][y][1];
    			if (nxtx == x + 1 && nxty == y + 1)
    				NoMoveA[x] = 1, NoMoveB[y] = 1;
    			x = nxtx, y = nxty;
    		}
    		
    		for (int i = 1; i <= n; i++)
    		{
    			if (NoMoveA[i]) continue;
    			for (int j = i; j <= n; j++)
    			{
    				if (NoMoveB[j] || s[i] != t[j]) continue;
    				bool tmp = NoMoveB[j];
    				for (int k = j; k >= i + 1; k--)
    					t[k] = t[k - 1], NoMoveB[k] = NoMoveB[k - 1];
    				NoMoveB[i] = tmp;
    				t[i] = s[i];
    				printf ("%d %d
    ", j, i);
    				break;
    			}
    		}
    	}
    	return 0;
    }
    

    T4 矩形:

    题目大意:

    给你 (n) 条线段(他们要么平行要么垂直),求那些线段可以围成矩阵。

    正文:

    每行用 bitset 存一个与每列是否有交点的状态,然后枚举两行求同时拥有两列的数量。时间复杂度 (mathcal{O}(n^3omega^{-1})),其中 (omega=32),勉强卡过。

    代码:

    const int N = 2010;
    
    inline ll Read()
    {
    	ll x = 0, f = 1;
    	char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = -f, c = getchar();
    	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
    	return x * f;
    }
    
    int n; 
    int cnt1, cnt2;
    struct Segment
    {
    	int x1, y1, x2, y2;
    }a[N], b[N];
    
    bool isInt (int u, int v)
    {
    	return b[v].y1 <= a[u].y1 && a[u].y1 <= b[v].y2 && a[u].x1 <= b[v].x1 && b[v].x1 <= a[u].x2;
    }
    
    bitset<N> con[N], tmp;
    ll ans;
    
    int main()
    {
    	n = Read();
    	for (int i = 1; i <= n; i++)
    	{
    		int x1 = Read(), y1 = Read(), x2 = Read(), y2 = Read();
    		if (x1 != x2) 
    		{
    			if (x1 > x2) x1 ^= x2 ^= x1 ^= x2, y1 ^= y2 ^= y1 ^= y2;
    			a[++cnt1] = (Segment){x1, y1, x2, y2};
    		}
    		else 
    		{
    			if (y1 > y2) x1 ^= x2 ^= x1 ^= x2, y1 ^= y2 ^= y1 ^= y2;
    			b[++cnt2] = (Segment){x1, y1, x2, y2};
    		}
    	}
    	for (int i = 1; i <= cnt1; i++)
    		for (int j = 1; j <= cnt2; j++)
    			if (isInt(i, j))
    				con[i].set(j, 1);
    	for (int i = 2; i <= cnt1; i++)
    		for (int j = 1; j < i; j++)
    		{
    			tmp = con[i] & con[j];
    			ll cnt = tmp.count();
    			ans += cnt * (cnt - 1) / 2;
    		}
    	printf ("%lld
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    iOS证书的使用
    ios设备管理
    矩阵的相关问题(旋转矩阵&螺旋矩阵)
    flex实现多列布局效果&对角线布局
    peerdependencies
    数组和对象遍历方法对比
    async和defer
    Promise.all并发限制
    electron+react开发属于自己的桌面应用
    webpack代码切割
  • 原文地址:https://www.cnblogs.com/GJY-JURUO/p/15022067.html
Copyright © 2011-2022 走看看