zoukankan      html  css  js  c++  java
  • Day2-D-Oil Deposits-POJ-1562

    The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.

    Input

    The input contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 <= m <= 100 and 1 <= n <= 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either `*', representing the absence of oil, or `@', representing an oil pocket. 

    Output

    are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.

    Sample Input

    1 1
    *
    3 5
    *@*@*
    **@**
    *@*@*
    1 8
    @@****@*
    5 5 
    ****@
    *@@*@
    *@**@
    @@@*@
    @@**@
    0 0

    Sample Output

    0
    1
    2
    2

    分析:板子题,求连通块个数,用DFS+种子填充法即可,直接给出代码:
    const int maxm = 110;
    
    int vis[maxm][maxm], n, m;
    string G[maxm];
    
    bool inside(int x, int y) {
        return x >= 0 && x < n && y >= 0 && y < m;
    }
    
    void dfs(int x,int y, int id) {
        if(vis[x][y])
            return;
        vis[x][y] = id;
        for(int i = -1; i < 2; ++i) {
            for (int j = -1; j < 2; ++j) {
                if(i || j) {
                    int nx = x + i, ny = y + j;
                    if(inside(nx,ny) && G[nx][ny] == '@' && !vis[nx][ny])
                        dfs(nx, ny, id);
                }
            }
                
        }
    }
    
    int main() {
        while(scanf("%d%d",&n,&m) && n+m) {
            getchar();
            memset(vis, 0, sizeof(vis));
            for(int i = 0; i < n; ++i)
                cin >> G[i];
            int sum = 0;
            for(int i = 0; i < n; ++i) {
                for(int j = 0; j < m; ++j) {
                    if(G[i][j] == '@' && !vis[i][j])
                        dfs(i, j, ++sum);
                }
            }
            printf("%d
    ",sum);
        }
    }
    View Code
  • 相关阅读:
    论如何O(1)快速乘
    luogu3605晋升者计数
    分数规划小结
    洛谷 P1589 泥泞路 & 2019青岛市竞赛(贪心)
    洛谷 P3368 【模板】树状数组 2(区间加,单点查询)
    前缀和序列 & 差分序列
    洛谷 P3374 【模板】树状数组 1(单点加,区间和)
    2019青岛市程序设计竞赛游记
    0x3f3f3f3f 0xbfbfbfbf 等的原理及应用
    memset 初始化数组 & 实现原理
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/11220974.html
Copyright © 2011-2022 走看看