zoukankan      html  css  js  c++  java
  • luogu P2765 魔术球问题

    题目中没有说球的上限是多少,只告诉了柱子,那么我们就应该以柱子为界去增加球,考虑将每两个能组成完全平方数的点连边,就形成了一个DAG(有向无环图),由于是DAG,可以转换为最小覆盖问题,即最多有n条路径(柱子数),求其能覆盖的最大点数,最小覆盖路径 = 节点数 - 最大匹配数,可以将其拆成二分图跑匈牙利/最大流,由Hall定理,|S| <= |T|,此处的|S|就等于节点数-最大匹配数,而|T|等于最小覆盖路径,就是柱子数n(n个路径必有n个节点),在满足条件的情况下增加球的数量即可。

    在求最小覆盖路径时,可以用匈牙利/dinic,首先都要先拆分成二分图,每个点拆成一个入点一个出点,用dinic时,就要再设一个源点一个汇点,进行多次增广路,每一次的flow就是其增加节点后增加的匹配数,而用匈牙利时可以不实际拆图,对每个节点都跑一次匈牙利即可。

    #include<bits/stdc++.h>
    using namespace std;
    #define lowbit(x) ((x)&(-x))
    typedef long long LL;
    
    const int maxm = 1e5+5;
    const int INF = 0x3f3f3f3f;
    
    struct edge{
        int u, v, nex;//, cap, flow, nex;
    } edges[maxm];
    
    int head[maxm], cur[maxm], cnt, level[maxm], pre[maxm];
    bool vis[maxm];
    
    void init() {
        memset(head, -1, sizeof(head));memset(pre, -1, sizeof(pre));
    }
    
    void addedge(int u, int v, int cap) {
        edges[cnt] = edge{u, v, head[u]};//cap, 0, head[u]};
        head[u] = cnt++;
    }
    
    bool dfs(int u) {
        for(int i = head[u]; i != -1; i = edges[i].nex) {
            int v = edges[i].v;
            if(!vis[v]) {
                vis[v] = true;
                if(pre[v] == -1|| dfs(pre[v])) {
                    pre[v] = u;
                    return true;
                }
            }
        }
        return false;
    }
    
    void run_case() {
        init();
        int n; cin >> n;
        int flow = 0, num = 0;
        while(num - flow <= n) {
            num++;
            for(int i = sqrt(num)+1; i*i<(num<<1); ++i) {
                //和dinic一样 由新加的点向原点连,保证能更新答案,因为从新点跑匈牙利
                addedge(num, i*i-num,0);
            }
            flow += dfs(num); memset(vis, 0, sizeof(vis));
        }
        cout << --num;
        for(int i = 1; i <= num; ++i) {
            if(!vis[i]) {
                cout << "
    ";
                for(int u = i; u!=-1; u = pre[u]) {
                    vis[u] = true;
                    cout << u << " ";
                }
                    
            }
        }
    }
    
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(0);
        run_case();
        //cout.flush();
        return 0;
    }
    匈牙利
    #include<bits/stdc++.h>
    using namespace std;
    #define lowbit(x) ((x)&(-x))
    typedef long long LL;
    
    const int maxm = 1e5+5;
    const int INF = 0x3f3f3f3f;
    
    struct edge{
        int u, v, cap, flow, nex;
    } edges[maxm];
    
    int head[maxm], cur[maxm], cnt, level[maxm], pre[maxm];
    bool vis[maxm];
    
    void init() {
        memset(head, -1, sizeof(head));
    }
    
    void addedge(int u, int v, int cap) {
        edges[cnt] = edge{u, v, cap, 0, head[u]};
        head[u] = cnt++;
    }
    
    void bfs(int s) {
        memset(level, -1, sizeof(level));
        queue<int> q;
        level[s] = 0;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            for(int i = head[u]; i != -1; i = edges[i].nex) {
                edge& now = edges[i];
                if(now.cap > now.flow && level[now.v] < 0) {
                    level[now.v] = level[u] + 1;
                    q.push(now.v);
                }
            }
        }
    }
    
    int dfs(int u, int t, int f) {
        if(u == t) return f;
        for(int& i = cur[u]; i != -1; i = edges[i].nex) {
            edge& now = edges[i];
            if(now.cap > now.flow && level[u] < level[now.v]) {
                int d = dfs(now.v, t, min(f, now.cap - now.flow));
                if(d > 0) {
                    now.flow += d;
                    edges[i^1].flow -= d;
                    pre[u>>1] = now.v>>1;
                    return d;
                }
    
            }
        }
        return 0;
    }
    
    int dinic(int s, int t) {
        int maxflow = 0;
        for(;;) {
            bfs(s);
            if(level[t] < 0) break;
            memcpy(cur, head, sizeof(head));
            int f;
            while((f = dfs(s, t, INF)) > 0)
                maxflow += f;
        }
        return maxflow;
    }
    
    void run_case() {
        init();
        int n; cin >> n;
        int s = 0, t = 1e5;
        int flow = 0, num = 0;
        while(num - flow <= n) {
            num++;
            addedge(s, num<<1, 1), addedge(num<<1, s, 0);
            addedge((num<<1)|1, t, 1), addedge(t, (num<<1)|1, 0);
            for(int i = sqrt(num)+1; i*i<(num<<1); ++i) {
                //是将原有的球的入点向新加的球的出点连边,保证能增加流
                addedge((i*i-num)<<1, (num<<1)|1, 1), addedge((num<<1)|1, (i*i-num)<<1, 0);
            }
            flow += dinic(s, t);
        }
        cout << --num;
        for(int i = 1; i <= num; ++i) {
            if(!vis[i]) {
                cout << "
    ";
                for(int u = i; u&&u!=t>>1; u = pre[u]) {
                    vis[u] = true;
                    cout << u << " ";
                }
                    
            }
        }
    }
    
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(0);
        run_case();
        //cout.flush();
        return 0;
    }
    Dinic
  • 相关阅读:
    zabbix_QQ邮件告警部署(待续。。。。。。)
    FTP服务的搭建
    项目: NFS服务的搭建
    用ngxin搭建简单的下载站点
    脚本设定开机自启动
    自建小项目:自动化脚本安装ngnix项目
    Zabbix Web操作深入(待续------)
    DHCP原理与配置
    PXE高效能网络批量装机
    DNS域名解析服务
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12273689.html
Copyright © 2011-2022 走看看