[题目链接]https://atcoder.jp/contests/abc156/tasks/abc156_d
简单数论问题,题意就是有n个数,不能组成a与b个数,问有多少种组合方式
那就是C(n,1)+C(n,2)+....+C(n,n)-C(n,a)-C(n,b)
和式部分为2^n-1
由于a,b的范围在2e5,直接运用逆元+原始定义求两个组合数就行了
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL;
const LL MOD = 1e9+7;
void ex_gcd(LL a, LL b, LL& x, LL& y) {
if(!b) {
x = 1, y = 0;
} else {
ex_gcd(b, a%b, y, x);
y -= x * (a / b);
}
}
LL inv(LL t, LL p) {
LL x, y, d;
ex_gcd(t, p, x, y);
return (x%p+p)%p;
}
LL quick_pow(LL a, LL b, LL p) {
LL ret = 1;
while(b) {
if(b & 1) ret = (ret * a) % p;
a = (a * a) % p;
b >>= 1;
}
return ret;
}
void run_case() {
LL n, a, b;
cin >> n >> a >> b;
if(n <= 2) {
cout << "0";
return;
}
LL all = quick_pow(2, n, MOD) - 1;
LL fa = 1, fb = 1;
// get a! and b!
for(LL i = a; i >= 1; --i)
fa = (fa * i) % MOD;
for(LL i = b; i >= 1; --i)
fb = (fb * i) % MOD;
LL n1 = 1, n2 = 1;
// get n*(n-1)---*(n-a+1)
for(LL i = n; i >= n-a+1; --i)
n1 = (n1 * i) % MOD;
for(LL i = n; i >= n-b+1; --i)
n2 = (n2 * i) % MOD;
//get MOD inverse
LL invfa = inv(fa, MOD), invfb = inv(fb, MOD);
all = ((all - n1*invfa%MOD)+MOD)%MOD;
all = ((all - n2*invfb%MOD)+MOD)%MOD;
cout << all;
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
cout.flags(ios::fixed);cout.precision(10);
run_case();
cout.flush();
return 0;
}