zoukankan      html  css  js  c++  java
  • G

    G - Mike and gcd problem

    Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .

    Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.

     is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).

    Input

    The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.

    The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

    Output

    Output on the first line "YES" (without quotes) if it is possible to make sequence Abeautiful by performing operations described above, and "NO" (without quotes) otherwise.

    If the answer was "YES", output the minimal number of moves needed to make sequenceA beautiful.

    Example

    Input
    2
    1 1
    Output
    YES
    1
    Input
    3
    6 2 4
    Output
    YES
    0
    Input
    2
    1 3
    Output
    YES
    1
    题意:输入n个数 (2 ≤ n ≤ 100 000),操作:把a[i],a[i+1] 替换成 a[i]-a[i+1],a[i]+a[i+1],问最少多少次操作
    使所有元素的gcd>1。
    题解:假设两个数a,b。操作一次a-b,a+b. 操作两次 -2b,2a。gcd=2;
    所以任意两个数两次操作后gcd一定>1;
    当两个数是偶数时,需要0次操作
    当两个是奇数时,需要1次操作
    当一奇一偶时,需要2次操作
    先循环一遍两个都是奇数的,然后把这两个数更改为偶数,操作次数+1;
    在循环一遍一奇一偶成对的,然后把这两个数更改为偶数,操作次数+2;
    代码:
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cstdio>
    long long gcd(long long a,long long b)
    {
        if(b==0)
            return a;
        else
            gcd(b,a%b);
    }
    using namespace std;
    int main()
    {
        long long a[100005],ans;
        int n,i,num=0;
        cin>>n;
        for(i=1;i<=n;i++)
            cin>>a[i];
        ans=gcd(a[1],a[2]);
        for(i=3;i<=n;i++)
            ans=gcd(ans,a[i]);
        if(ans>1)
            cout<<"YES"<<endl<<0<<endl;
        else
        {
            for(i=1;i<n;i++)
            {
                if(a[i]%2&&a[i+1]%2)
                {
                    a[i]=0; a[i+1]=0; num++;
                }
            }
            for(i=1;i<n;i++)
            {
               if(a[i]%2==0&&a[i+1]%2==1)
               {
                   a[i]=0; a[i+1]=0; num+=2;
               }
                else if(a[i]%2==1&&a[i+1]%2==0)
                {
                    a[i]=0; a[i+1]=0; num+=2;
                }
                else
                    continue;
            }
            cout<<"YES"<<endl<<num<<endl;
        }
    }
    
    
    
    
    
  • 相关阅读:
    (转)剖析Delphi中的构造和析构
    求排列组合
    用链表写的猴子选大王
    查找文件
    在Delphi程序中应用IE浏览器控件
    汉字转UNICODE?
    webbrowser去掉边框
    自己写的猴子选大王
    数据库IDE查询实例
    Compiz Check测试Linux桌面3D兼容性
  • 原文地址:https://www.cnblogs.com/GXXX/p/6814992.html
Copyright © 2011-2022 走看看