zoukankan      html  css  js  c++  java
  • 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组

    题目描述

    Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows are conducting another one of their strangeprotests, so each cow i is holding up a sign with an integer A_i(-10,000 <= A_i <= 10,000).

    FJ knows the mob of cows will behave if they are properly groupedand thus would like to arrange the cows into one or more contiguousgroups so that every cow is in exactly one group and that every group has a nonnegative sum.

    Help him count the number of ways he can do this, modulo 1,000,000,009.

    By way of example, if N = 4 and the cows' signs are 2, 3, -3, and1, then the following are the only four valid ways of arranging the cows:

    (2 3 -3 1)

    (2 3 -3) (1)

    (2) (3 -3 1)

    (2) (3 -3) (1)

    Note that this example demonstrates the rule for counting different orders of the arrangements.

    给出n个数,问有几种划分方案(不能改变数的位置),使得每组中数的和大于等于0。输出方案数除以 1000000009的余数。

    输入

    * Line 1: A single integer: N
    * Lines 2..N + 1: Line i + 1 contains a single integer: A_i

    输出

    * Line 1: A single integer, the number of arrangements modulo 1,000,000,009.

    样例输入

    4
    2
    3
    -3
    1

    样例输出

    4


    题解

    dp+树状数组

    设dp[i]为前i个数的划分方案数。

    则易推出dp[i]=∑dp[j](sum[j]≤sum[i],j<i)。

    那么可以用树状数组维护sum[j]在区间内的dp[j]的和。

    由于sum过大且可能出现非正数,所以要先将sum离散化。

    #include <cstdio>
    #include <algorithm>
    #define MOD 1000000009
    using namespace std;
    struct data
    {
    	int sum , p;
    }a[100010];
    int f[100010] , dp[100010] , v[100010] , top;
    bool cmp1(data a , data b)
    {
    	return a.sum < b.sum;
    }
    bool cmp2(data a , data b)
    {
    	return a.p < b.p;
    }
    void add(int p , int x)
    {
    	int i;
    	for(i = p ; i <= top ; i += i & (-i))
    		f[i] = (f[i] + x) % MOD;
    }
    int query(int p)
    {
    	int i , ans = 0;
    	for(i = p ; i ; i -= i & (-i))
    		ans = (ans + f[i]) % MOD;
    	return ans;
    }
    int main()
    {
    	int n , i , t;
    	scanf("%d" , &n);
    	for(i = 1 ; i <= n ; i ++ )
    		scanf("%d" , &t) , a[i].sum = a[i - 1].sum + t , a[i].p = i;
    	sort(a , a + n + 1 , cmp1);
    	v[0] = 0x80000000;
    	for(i = 0 ; i <= n ; i ++ )
    	{
    		if(a[i].sum != v[top]) v[++top] = a[i].sum;
    		a[i].sum = top;
    	}
    	sort(a , a + n + 1 , cmp2);
    	dp[0] = 1;
    	add(a[0].sum , 1);
    	for(i = 1 ; i <= n ; i ++ )
    		dp[i] = query(a[i].sum) , add(a[i].sum , dp[i]);
    	printf("%d
    " , dp[n]);
    	return 0;
    }

     

  • 相关阅读:
    网络多线程 ---实现网络负载图片
    optimizer for eclipse--Eclipse优化,让你的Eclipse快来飞!
    ORACLE AUTOMATIC STORAGE MANAGEMENT翻译-第二章 ASM instance(1)
    IOS 开展 分别制定了iphone 和 ipad 好? 或开发一个 Universal好?
    DevExpress VCL 2014.1.2 for C++BUILDER XE6
    swift http请求返回json数据和分析
    Spark里面的任务调度:离SparkContext开始
    ftk学习记录(一个进度条文章)
    Appium Android Bootstrap控制源代码的分析AndroidElement
    别忽视了业绩比较基准
  • 原文地址:https://www.cnblogs.com/GXZlegend/p/6421435.html
Copyright © 2011-2022 走看看