zoukankan      html  css  js  c++  java
  • hdu 2822 Dogs

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=2822 

    Dogs

    Description

    Prairie dog comes again! Someday one little prairie dog Tim wants to visit one of his friends on the farmland, but he is as lazy as his friend (who required Tim to come to his place instead of going to Tim's), So he turn to you for help to point out how could him dig as less as he could.

    We know the farmland is divided into a grid, and some of the lattices form houses, where many little dogs live in. If the lattices connect to each other in any case, they belong to the same house. Then the little Tim start from his home located at (x0, y0) aim at his friend's home ( x1, y1 ). During the journey, he must walk through a lot of lattices, when in a house he can just walk through without digging, but he must dig some distance to reach another house. The farmland will be as big as 1000 * 1000, and the up left corner is labeled as ( 1, 1 ).

    Input

    The input is divided into blocks. The first line in each block contains two integers: the length m of the farmland, the width n of the farmland (m, n ≤ 1000). The next lines contain m rows and each row have n letters, with 'X' stands for the lattices of house, and '.' stands for the empty land. The following two lines is the start and end places' coordinates, we guarantee that they are located at 'X'. There will be a blank line between every test case. The block where both two numbers in the first line are equal to zero denotes the end of the input.

    Output

    For each case you should just output a line which contains only one integer, which is the number of minimal lattices Tim must dig.

    Sample Input

    6 6
    ..X...
    XXX.X.
    ....X.
    X.....
    X.....
    X.X...
    3 5
    6 3

    0 0

    Sample Output

    3

    走'X'不用花时间,走'.'时间为1

     1 #include<algorithm>
     2 #include<iostream>
     3 #include<cstdlib>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<vector>
     7 #include<queue>
     8 #include<map>
     9 using std::cin;
    10 using std::cout;
    11 using std::endl;
    12 using std::find;
    13 using std::sort;
    14 using std::map;
    15 using std::pair;
    16 using std::vector;
    17 using std::multimap;
    18 using std::priority_queue;
    19 #define pb(e) push_back(e)
    20 #define sz(c) (int)(c).size()
    21 #define mp(a, b) make_pair(a, b)
    22 #define all(c) (c).begin(), (c).end()
    23 #define iter(c) decltype((c).begin())
    24 #define cls(arr,val) memset(arr,val,sizeof(arr))
    25 #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    26 #define rep(i, n) for (int i = 0; i < (int)(n); i++)
    27 #define tr(c, i) for (iter(c) i = (c).begin(); i != (c).end(); ++i)
    28 const int N = 1010;
    29 typedef unsigned long long ull;
    30 const int dx[] = { 0, 0, -1, 1 }, dy[] = { -1, 1, 0, 0 };
    31 bool vis[N][N];
    32 char rec[N][N];
    33 int m, n, Sx, Sy, Dx, Dy;
    34 struct Node {
    35     int x, y, s;
    36     Node(int i = 0, int j = 0, int k = 0) :x(i), y(j), s(k) {}
    37     bool operator<(const Node &a) const {
    38         return s > a.s;
    39     }
    40 };
    41 void bfs() {
    42     cls(vis, false);
    43     priority_queue<Node> que;
    44     que.push(Node(Sx, Sy, 0));
    45     vis[Sx][Sy] = true;
    46     while (!que.empty()) {
    47         Node tmp = que.top(); que.pop();
    48         if (tmp.x == Dx && tmp.y == Dy) { printf("%d
    ", tmp.s); return; }
    49         rep(i, 4) {
    50             int nx = tmp.x + dx[i], ny = tmp.y + dy[i];
    51             if (nx < 0 || nx >= m || ny < 0 || ny >= n || vis[nx][ny]) continue;
    52             if (rec[nx][ny] == 'X') que.push(Node(nx, ny, tmp.s));
    53             else que.push(Node(nx, ny, tmp.s + 1));
    54             vis[nx][ny] = true;
    55         }
    56     }
    57 }
    58 int main() {
    59 #ifdef LOCAL
    60     freopen("in.txt", "r", stdin);
    61     freopen("out.txt", "w+", stdout);
    62 #endif
    63     while (~scanf("%d %d", &m, &n) && m + n) {
    64         rep(i, m) scanf("%s", rec[i]);
    65         scanf("%d %d %d %d", &Sx, &Sy, &Dx, &Dy);
    66         Sx--, Sy--, Dx--, Dy--;
    67         bfs();
    68     }
    69     return 0;
    70 }
    View Code
    By: GadyPu 博客地址:http://www.cnblogs.com/GadyPu/ 转载请说明
  • 相关阅读:
    面试题:给定一个长度为N的数组,其中每个元素的取值范围都是1到N。判断数组中是否有重复的数字
    位运算技巧3
    Android消息循环分析
    ubuntu安装软件的方式
    fragment Trying to instantiate a class com.example.testhuanxindemo.MyFragment that is not a Fragmen
    LAN路由
    php 简易验证码(GD库)
    飘逸的python
    它们,不能是虚函数!!!
    HTML5调用摄像头实现拍照功能(兼容各大主流浏览器)
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4606109.html
Copyright © 2011-2022 走看看