zoukankan      html  css  js  c++  java
  • hdu 2988 Dark roads

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=2988  

    Dark roads

    Description

    Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way, that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction. 

    What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe? 

    Input

    The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000 and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 231.

    Output

    For each test case print one line containing the maximum daily amount the government can save. 

    Sample Input

    7 11
    0 1 7
    0 3 5
    1 2 8
    1 3 9
    1 4 7
    2 4 5
    3 4 15
    3 5 6
    4 5 8
    4 6 9
    5 6 11
    0 0

    Sample Output

    51

    最小生成树。。

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<set>
    using std::set;
    using std::sort;
    using std::pair;
    using std::swap;
    using std::multiset;
    using std::priority_queue;
    #define pb(e) push_back(e)
    #define sz(c) (int)(c).size()
    #define mp(a, b) make_pair(a, b)
    #define all(c) (c).begin(), (c).end()
    #define iter(c) decltype((c).begin())
    #define cls(arr, val) memset(arr, val, sizeof(arr))
    #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    #define rep(i, n) for(int i = 0; i < (int)n; i++)
    #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
    const int N = 200010;
    const int INF = 0x3f3f3f3f;
    typedef unsigned long long ull;
    struct edge {
        int u, v, w;
        inline bool operator<(const edge &x) const {
            return w < x.w;
        }
    }G[N];
    struct Kruskal {
        int E, sum, par[N], rank[N];
        inline void init(int n) {
            E = sum = 0;
            rep(i, n + 1) {
                par[i] = i, rank[i] = 0;
            }
        }
        inline void built(int m) {
            int u, v, w;
            while (m--) {
                scanf("%d %d %d", &u, &v, &w);
                G[E++] = { u, v, w }, sum += w;
            }
        }
        inline int find(int x) {
            while (x != par[x]) {
                x = par[x] = par[par[x]];
            }
            return x;
        }
        inline bool unite(int x, int y) {
            x = find(x), y = find(y);
            if (x == y) return false;
            if (rank[x] < rank[y]) {
                par[x] = y;
            } else {
                par[y] = x;
                rank[x] += rank[x] == rank[y];
            }
            return true;
        }
        inline int kruskal() {
            int ans = 0;
            sort(G, G + E);
            rep(i, E) {
                edge &e = G[i];
                if (unite(e.u, e.v)) {
                    ans += e.w;
                }
            }
            return ans;
        }
        inline void solve(int n, int m) {
            init(n), built(m);
            printf("%d
    ", sum - kruskal());
        }
    }go;
    int main() {
    #ifdef LOCAL
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w+", stdout);
    #endif
        int n, m;
        while (~scanf("%d %d", &n, &m), n + m) {
            go.solve(n, m);
        }
        return 0;
    }
  • 相关阅读:
    轻松学习之Linux教程二 一览纵山小:Linux操作系统具体解释
    SpringMVC经典系列-15对SpringMVC的总结---【LinusZhu】
    Testng 的数据源 驱动測试 代码与配置
    怎样统计分析CSDN博客流量
    python小知识点
    Javascript 笔记与总结(2-10)删除节点,创建节点
    C#6.0语言规范(十四) 枚举
    C#6.0语言规范(十三) 接口
    C#6.0语言规范(十二) 数组
    C#6.0语言规范(十一) 结构
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4783980.html
Copyright © 2011-2022 走看看