zoukankan      html  css  js  c++  java
  • hdu 3371 Connect the Cities

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=3371  

    Connect the Cities

    Description

    In 2100, since the sea level rise, most of the cities disappear. Though some survived cities are still connected with others, but most of them become disconnected. The government wants to build some roads to connect all of these cities again, but they don’t want to take too much money. 

    Input

    The first line contains the number of test cases.
    Each test case starts with three integers: n, m and k. n (3 <= n <=500) stands for the number of survived cities, m (0 <= m <= 25000) stands for the number of roads you can choose to connect the cities and k (0 <= k <= 100) stands for the number of still connected cities.
    To make it easy, the cities are signed from 1 to n.
    Then follow m lines, each contains three integers p, q and c (0 <= c <= 1000), means it takes c to connect p and q.
    Then follow k lines, each line starts with an integer t (2 <= t <= n) stands for the number of this connected cities. Then t integers follow stands for the id of these cities.

    Output

    For each case, output the least money you need to take, if it’s impossible, just output -1.

    Sample Input

    1
    6 4 3
    1 4 2
    2 6 1
    2 3 5
    3 4 33
    2 1 2
    2 1 3
    3 4 5 6

    Sample Output

    1

    最小生成树,这道题卡时间g++过了,c++ tle了/(ㄒoㄒ)/~~。。

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<map>
    using std::map;
    using std::min;
    using std::sort;
    using std::pair;
    using std::vector;
    using std::multimap;
    using std::priority_queue;
    #define pb(e) push_back(e)
    #define sz(c) (int)(c).size()
    #define mp(a, b) make_pair(a, b)
    #define all(c) (c).begin(), (c).end()
    #define iter(c) decltype((c).begin())
    #define cls(arr, val) memset(arr, val, sizeof(arr))
    #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    #define rep(i, n) for(int i = 0; i < (int)n; i++)
    #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
    const int N = 510;
    const int INF = 0x3f3f3f3f;
    struct edge {
        int u, v, w;
        inline bool operator<(const edge &x) const {
            return w < x.w;
        }
    }G[(N * N) << 1];
    struct Kruskal {
        int E, par[N], rank[N];
        inline void init(int n) {
            E = 0;
            rep(i, n + 2) {
                 par[i] = i;
                 rank[i] = 0;
            }
        }
        inline int find(int x) {
            while(x != par[x]) {
                x = par[x] = par[par[x]];
            }
            return x;
        }
        inline bool unite(int x, int y) {
            x = find(x), y = find(y);
            if(x == y) return false;
            if(rank[x] < rank[y]) {
                par[x] = y;
            } else {
                par[y] = x;
                rank[x] += rank[x] == rank[y];
            }
            return true;
        }
        inline void built(int m, int k) {
            int u, v, w, q, fa;
            while(m--) {
                scanf("%d %d %d", &u, &v, &w);
                G[E++] = { u, v, w };
            }
            while(k--) {
                scanf("%d", &q);
                scanf("%d %d", &u, &v);
                G[E++] = { u, v, 0 };
                fa = v;
                rep(i, q - 2) {
                    scanf("%d", &v);
                    G[E++] = { fa, v, 0 };
                    fa = v;
                }
            }
        }
        inline int kruskal(int n) {
            int ans = 0, cnt = 0;
            sort(G, G + E);
            rep(i, E) {
                int u = G[i].u, v = G[i].v;
                if(unite(u, v)) {
                    ans += G[i].w;
                    if(++cnt >= n - 1) return ans;
                }
            }
            return -1;
        }
        inline void solve(int n, int m, int k) {
            init(n), built(m, k);
            printf("%d
    ", kruskal(n));
        }
    }go;
    int main() {
    #ifdef LOCAL
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w+", stdout);
    #endif
        int n, m, k, T;
        scanf("%d", &T);
        while(T--) {
            scanf("%d %d %d", &n, &m, &k);
            go.solve(n, m, k);
        }
        return 0;
    }
  • 相关阅读:
    DOM解析和SAX解析对比
    SAX解析示例代码和原理
    xPath技术
    dom4j工具对XML写入修改删除操作实现
    Dom4j工具j解析XML原理和示例代码
    Servlet的多线程并发问题
    Servlet的自动加载
    servlet缺省路径
    线程安全问题出现 的根本原因和解决方案
    9.12測试(四)——測试笔
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4792917.html
Copyright © 2011-2022 走看看