zoukankan      html  css  js  c++  java
  • leetcode Find Median from Data Stream

    题目连接

    https://leetcode.com/problems/find-median-from-data-stream/ 

    Find Median from Data Stream

    Description

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

    Examples: 
    [2,3,4] , the median is 3

    [2,3], the median is (2 + 3) / 2 = 2.5

    Design a data structure that supports the following two operations:

    void addNum(int num) - Add a integer number from the data stream to the data structure. 
    double findMedian() - Return the median of all elements so far. 
    For example:

    add(1) 
    add(2) 
    findMedian() -> 1.5 
    add(3) 
    findMedian() -> 2

    平衡树裸题。。

    class MedianFinder {
    public:
    	const int INF = ~0u >> 1;
    	MedianFinder() { null = new Node(INF, 0, NULL); root = null; }
    	~MedianFinder() { clear(root), delete null; }
    	void addNum(int num) {
    		insert(root, num);
    	}
    	double findMedian() {
    		int t = root->s;
    		if (t & 1) {
    			return (double)kth((t >> 1) + 1);
    		} else {
    			int v1 = kth(t >> 1);
    			int v2 = kth((t >> 1) + 1);
    			return (v1 + v2) / 2.0;
    		}
    	}
    private:
    	struct Node {
    		int v, s, c;
    		Node *ch[2];
    		Node() = default;
    		Node(int _v_, int _s_, Node *p) {
    			v = _v_, s = c = _s_;
    			ch[0] = ch[1] = p;
    		}
    		inline void push_up() {
    			s = ch[0]->s + ch[1]->s + c;
    		}
    		inline int cmp(int x) const {
    			return x == v ? -1 : x > v;
    		}
    	}*root, *null;
    	inline Node *newNode(int v) {
    		Node *x = new Node(v, 1, null);
    		return x;
    	}
    	inline void rotate(Node *&x, int d) {
    		Node *k = x->ch[!d]; x->ch[!d] = k->ch[d], k->ch[d] = x;
    		k->s = x->s; x->push_up(); x = k;
    	}
    	inline void Maintain(Node *&x, int d) {
    		if (!x->ch[d]->s) return;
    		if (x->ch[d]->ch[d]->s > x->ch[!d]->s) rotate(x, !d);
    		else if (x->ch[d]->ch[!d]->s > x->ch[!d]->s) rotate(x->ch[d], d), rotate(x, !d);
    		else return;
    		Maintain(x, 0), Maintain(x, 1);
    	}
    	inline void insert(Node *&x, int v) {
    		if (!x->s) { x = newNode(v); return; }
    		x->s++;
    		int d = x->cmp(v);
    		if (-1 == d) { x->c++; return; }
    		insert(x->ch[d], v);
    		x->push_up();
    		Maintain(x, d);
    	}
    	inline void clear(Node *&x) {
    		if (x->s) clear(x->ch[0]), clear(x->ch[1]), delete x;
    	}
    	inline int kth(int k) {
    		Node *x = root;
    		for (int t = 0; x->s;) {
    			t = x->ch[0]->s;
    			if (k <= t) x = x->ch[0];
    			else if (t + 1 <= k && k <= t + x->c) break;
    			else k -= t + x->c, x = x->ch[1];
    		}
    		return x->v;
    	}
    };
  • 相关阅读:
    Android 请求运行时权限
    Android 调试技巧之快速重启生效
    ubuntu 用aptitude代替apt-get处理依赖性问题
    Learning Git by Animations
    Android调试技巧
    Android O PackageInstaller 解析
    阅读代码工具:Visual Studio Code
    Android 缓存策略demo
    |= 和 &= ~
    Android 逆向工具
  • 原文地址:https://www.cnblogs.com/GadyPu/p/5011185.html
Copyright © 2011-2022 走看看