摘自:https://www.cnblogs.com/iupoint/p/10893641.html
1
2
3
4
5
|
import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns |
matplotlib参数设置
1
2
3
4
5
6
7
8
9
10
11
|
matplotlib.rcParams[ 'font.sans-serif' ] = [ 'SimHei' ] matplotlib.rcParams[ 'font.family' ] = 'sans-serif' matplotlib.rcParams[ 'axes.unicode_minus' ] = False #matplotlib.fontsize='15' #plt.rcParams['figure.figsize'] = (12.0,5.0) #设置图形大小 #图形内嵌式,notebook模式下(注释不可加在下列命令后) % matplotlib inline #ipython模式下 #%pylab inline |
seaborn参数设置
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#Seaborn有两组函数对风格进行控制:axes_style()/set_style()函数和plotting_context()/set_context()函数。 #Seaborn有5种预定义的主题:darkgrid(默认)、whitegrid、dark、white、ticks #Seaborn有4种预定义的上下文:paper、notebook(默认)、talk、poster sns.set_style( "whitegrid" ) ''' sns.set_context("poster") sns.set_style(style=None, rc=None) sns.despine(offset=10) #图与轴线距离 sns.despine() #去除刻度和轴线 sns.set_context(fontscale=1.5) #字体大小 sns.set_context(rc={'lines.linewidth':1.5) #线宽 sns.set() #恢复默认值 ''' |
其他参数设置
1
2
3
4
5
6
|
myfont = matplotlib.font_manager.FontProperties(fname = "simsun.ttc" ) #自定义字体库simsun.ttc ax1.set_xlabel( '时间' , fontproperties = myfont, size = 18 ) #原始matplotlib不支持中文 plt.gcf().set_facecolor(np.ones( 3 ) * 240 / 255 ) #设置背景色 plt.gcf().autofmt_xdate() #自动适应刻度线密度,包括x轴,y轴 plt.legend(loc = 1 ) #1,2,3,4分别对应图像的右上角,左上角,左下角,右下角 ax.invert_xaxis() #将x轴逆序 |
线图(1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
#数据 x = np.linspace( 0 , 10 , 1000 ) y1 = np.sin(x) y2 = np.cos(x) y3 = np.cos(x * * 2 ) plt.figure( 1 ) #图编号 plt.subplot( 221 ) plt.plot(x,y1,label = "$sin(x)$" ,color = "red" ,linewidth = 2 ) plt.plot(x,y2,label = "$cos(x)$" ,color = "blue" ,linewidth = 2 ) plt.subplot( 222 ) plt.scatter(x[: 1000 : 50 ],y2[: 1000 : 50 ],color = "blue" ,label = "$cos(x^2)$" ) plt.subplot( 212 ) #改变图分块 plt.plot(x,y1 + y3, "g-" ,label = "$sin(x)+cos(x^2)$" ) plt.xlabel( "time" ) plt.ylabel( "value" ) plt.title( "$sin(x)+cos(x^2)$ curve" ) plt.xlim( - 0.2 , 10.2 ) plt.legend() #显示左下角的图例 plt.subplots_adjust(left = 0.08 ,right = 0.95 ,wspace = 0.25 ,hspace = 0.45 ) #subplots_adjust类似于网页css格式化中的边距处理,取决于你需要绘制的大小和各模块之间的间距 plt.show() |
线图(2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
plt.figure( 3 ) plt.rcParams[ 'figure.figsize' ] = ( 12 , 4 ) plt.subplot( 121 ) def sinplot(flip = 1 ): x = np.linspace( 0 , 14 , 100 ) for i in range ( 1 , 7 ): plt.plot(x,np.sin(x + i * 0.5 ) * ( 7 - i) * flip) sinplot() plt.subplot( 122 ) x = np.arange( 0 , 2 * np.pi, 0.02 ) y = np.sin(x) y1 = np.sin( 2 * x) y2 = np.sin( 3 * x) ym1 = np.ma.masked_where(y1 > 0.5 , y1) ym2 = np.ma.masked_where(y2 < - 0.5 , y2) #绘图 lines = plt.plot(x, y, x, ym1, x, ym2, 'o' ) #设置线的属性 plt.setp(lines[ 0 ], linewidth = 1 ) plt.setp(lines[ 1 ], linewidth = 2 ) plt.setp(lines[ 2 ], linestyle = '-' ,marker = '^' ,markersize = 2 ) #线的标签 plt.legend(( 'No mask' , 'Masked if > 0.5' , 'Masked if < -0.5' ), loc = 'upper right' ) plt.title( 'Masked line demo' ) plt.show() |
条形图+饼图+直方图+阶梯图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
plt.figure( 2 ) #数据 np.random.seed( sum ( map ( ord , "aesthetics" ))) d1 = dict ([[ 'A' , 5 ], [ 'B' , 7 ], [ 'C' , 3 ]]) d2 = np.random.randn( 1000 ) #条形图 plt.subplot( 221 ) plt.bar(d1.keys(),d1.values(),align = 'center' ) #,alpha=.7,color='g' #plt.bar(range(3),d1.values(),align='center') #plt.xticks(range(3),xticks) plt.ylabel( "Frequency" ) plt.title( "Numbers of Books Students Read" ) #饼图 plt.subplot( 222 ) plt.pie(d1.values(),labels = d1.keys(),autopct = '%1.1f%%' ) plt.title( "Number of Books Students Read" ) #直方图 plt.subplot( 223 ) plt.hist(d2, 100 ) plt.xlabel( 'Heights' ) plt.ylabel( 'Frequency' ) plt.title( 'Height of Students' ) #阶梯曲线/累积分布曲线 plt.subplot( 224 ) plt.hist(d2, 20 ,normed = True ,histtype = 'step' ,cumulative = True ) plt.xlabel( 'Heights' ) plt.ylabel( 'Frequency' ) plt.title( 'Heights of Students' ) plt.subplots_adjust(left = 0.08 ,right = 0.95 ,wspace = 0.25 ,hspace = 0.45 ) #图间距 plt.show() |
饼图+箱线图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
plt.figure( 2 ) plt.subplot( 121 ) #fig, ax animals = dict ([[ 'frogs' , 15 ], [ 'hogs' , 20 ], [ 'dogs' , 45 ],[ 'cats' , 10 ]]) colors = 'yellowgreen' , 'gold' , 'lightskyblue' , 'lightcoral' explode = 0 , 0.1 , 0 , 0 plt.pie(animals.values(), explode = explode, labels = animals.keys(), colors = colors, autopct = '%1.1f%%' , shadow = True , startangle = 50 ) #ax.pie #ax.set(aspect="equal", title='Pie plot with animals') plt.axis( 'equal' ) plt.subplot( 122 ) plt.boxplot(animals.values(),labels = [ 'animals' ]) #plt.boxplot((x,y,z),labels=('x','y','z')) #水平vert=False,whis=1.5 #df.boxplot() plt.title( 'Heights of Students' ) plt.show() |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
plt.figure(figsize = ( 12 , 4 ), facecolor = "white" ) #数据 labels = np.array([ '综合' , '第一周' , '第二周' , '第三周' , '第四周' , '第五周' ]) #标签 nAttr = 6 #数据点个数 values = np.array([ 88.7 , 85 , 90 , 95 , 70 , 96 ]) #原始数据 angles = np.linspace( 0 , 2 * np.pi, nAttr, endpoint = False ) #弧度 #首尾相连 values = np.concatenate((values,[values[ 0 ]])) angles = np.concatenate((angles,[angles[ 0 ]])) #绘图 plt.subplot( 121 , polar = True ) #极坐标系 plt.plot(angles, values, 'bo-' , color = 'g' , linewidth = 2 ) #线 plt.fill(angles, values, facecolor = 'g' , alpha = 0.2 ) #区域 plt.thetagrids(angles * 180 / np.pi, labels) #标签 #plt.figtext(0.52, 0.95, 'python成绩分析图', ha='center') #标题 plt.title( 'python成绩分析图' ) plt.grid( True ) #plt.savefig('dota_radar.JPG') plt.subplot( 122 ) #fig, ax = plt.subplots() vals1 = [ 1 , 2 , 3 , 4 ] vals2 = [ 2 , 3 , 4 , 5 ] vals3 = [ 1 ] labels = 'A' , 'B' , 'C' , 'D' plt.pie(vals1, radius = 1.2 , autopct = '%1.1f%%' , pctdistance = 0.9 ) plt.pie(vals2, radius = 1 , autopct = '%1.1f%%' , pctdistance = 0.75 ) plt.pie(vals3, radius = 0.6 , colors = 'w' ) #ax.set(aspect="equal", title='Pie plot with `ax.pie`') plt.title( 'Pie plot with xx' ) plt.legend(labels, loc = 'best' ) #bbox_to_anchor=(1, 1), loc='best', borderaxespad=0. plt.show() |
散点图+直方图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
plt.figure(figsize = ( 12 , 4 )) #散点图 plt.subplot( 121 ) import matplotlib.cm as cm def scatter_plot_by_category(feat, x, y): gs = df.groupby(feat) cs = cm.rainbow(np.linspace( 0 , 1 , len (gs))) for g, c in zip (gs, cs): plt.scatter(g[ 1 ][x], g[ 1 ][y], color = c, alpha = 0.5 ) scatter_plot_by_category( 'target' , 'sepal length (cm)' , 'sepal width (cm)' ) plt.xlabel( 'sepal length (cm)' ) plt.ylabel( 'sepal width (cm)' ) plt.title( 'target' ) #直方图 plt.subplot( 122 ) mu, sigma = 100 , 15 x = mu + sigma * np.random.randn( 10000 ) x1 = np.linspace(x. min (), x. max (), 1000 ) normal = mlab.normpdf(x1, mu, sigma) #生成正态曲线的数据 kde = mlab.GaussianKDE(x) #生成核密度曲线的数据 #color='steelblue' #bins=np.arange(x.min(),x.max(), 5) #normed=True, #频率直方图 #cumulative=True, #积累直方图 n, bins, patches = plt.hist(x, bins = 50 , density = 1 , edgecolor = 'k' , facecolor = 'g' , alpha = 0.75 ) #边界色 + 填充色 line1, = plt.plot(x1, normal, 'r-' , linewidth = 2 ) line2, = plt.plot(x1, kde(x1), 'g-' , linewidth = 2 ) plt.legend([line1, line2],[ '正态曲线' , '核密度曲线' ],loc = 'best' ) plt.tick_params(top = 'off' , right = 'off' ) #去除边界刻度 plt.axvline( 90 ) #参考线 plt.text( 60 , . 025 , r '$mu=100, sigma=15$' ) #文本 plt.axis([ 40 , 160 , 0 , 0.03 ]) #刻度区间 plt.grid(ls = '--' ) plt.xlabel( 'Smarts' ) plt.ylabel( 'Probability' ) plt.title( 'Histogram of IQ' ) plt.show() |
seaborn.barplot绘制柱状图 更多:Seaborn常见绘图总结
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize = ( 12 , 4 )) plt.subplot( 121 ) a = np.arange( 40 ).reshape( 10 , 4 ) df = pd.DataFrame(a,columns = [ 'a' , 'b' , 'c' , 'd' ]) df[ 'a' ] = [ 0 , 4 , 4 , 8 , 8 , 8 , 4 , 12 , 12 , 12 ] df[ 'd' ] = list ( 'aabbabbbab' ) sns.barplot(x = 'a' , y = 'b' , data = df, hue = 'd' ) #分类柱状图 plt.subplot( 122 ) plt.bar(df[ 'a' ], df[ 'b' ], label = 'b' ) #barh(x,y) plt.bar(df[ 'a' ], df[ 'c' ], bottom = df[ 'b' ], color = 'r' , label = 'c' ) plt.legend(loc = 2 ) plt.show() |
并列柱状图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
bar_width = 0.3 x = np.arange( 3 ) tick_label = [ '一级医院' , '二级医院' , '三级医院' ] plt.figure(figsize = ( 12 , 4 )) plt.subplot( 121 ) #data1.groupby('医院等级').sum()[['医院数','本地定点医院数']].plot(kind="bar",width = .8) #.unstack() #data1[['医院数','本地定点医院数']].plot(kind="bar",width = .8) plt.bar(x, data1[ '医院数' ], width = bar_width, align = "center" , color = "c" , label = "全部医院" , alpha = 0.5 ) plt.bar(x + bar_width, data1[ '本地定点医院数' ], width = bar_width, align = "center" , color = "b" , label = "本地定点医院" , alpha = 0.5 ) plt.xticks(x + bar_width / 2 , tick_label) plt.legend() plt.title( '舟山市居民就医医院的等级分布' ) #plt.title('医院数分布') plt.subplot( 122 ) plt.bar(x, data1[ '总单号数' ], width = bar_width, align = "center" , color = "c" , label = "全部医院" , alpha = 0.5 ) plt.bar(x + bar_width, data1[ '本地定点医院单号量' ], width = bar_width, align = "center" , color = "b" , label = "本地定点医院" , alpha = 0.5 ) plt.xticks(x + bar_width / 2 , tick_label) plt.legend() plt.title( '舟山市居民在各等级医院就医的单号量分布' ) plt.show() |
堆积图
1
2
3
4
5
6
7
8
9
10
11
|
total = df. sum (axis = 1 ) for i in df.columns: df[i] = df[i] / total bottom = 0 for i in range (df.shape[ 1 ]): y = df.iloc[:n,i] plt.bar(x, y, bottom = bottom) bottom + = y plt.legend([ '一级医院' , '二级医院' , '三级医院' ]) plt.title( '100种常见病在不同医院等级下的单号量分布图' ) |
柱状折线图 / 双轴图(增速要乘100的哦)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
df = pd.DataFrame({ 'x' : list ( 'abcd' ), 'y' :[ 20 , 15 , 10 , 8 ], 'r' :[ 0.3 , 0.5 , 0.4 , 0.1 ]}) #plt.rcParams['figure.figsize'] = (12.0,5.0) fig = plt.figure(figsize = ( 8 , 4 )) #画柱子 ax1 = fig.add_subplot( 111 ) ax1.bar(df[ 'x' ], df[ 'y' ], alpha = . 7 , color = 'g' ) ax1.set_ylabel( 'xx收入' , fontsize = 12 ) plt.xticks( range (df.shape[ 0 ]), df[ 'x' ]) plt.xticks(fontsize = 10 ) #后面设置不了 plt.yticks(fontsize = 10 ) #画折线图 ax2 = ax1.twinx() ax2.plot(df[ 'x' ], df[ 'r' ], 'r' , marker = '*' , ms = 10 ) ax2.set_ylim([ 0 , 0.6 ]) ax2.set_ylabel( '同比增速(%)' , fontsize = 12 ) plt.yticks(fontsize = 10 ) #ax1.set_xticklabels('defg', rotation=-45) #旋转效果 plt.title( '近年xx公司xx收入与同比增速' , fontsize = 16 ) plt.grid( False ) #添加数据标签 for i in range (df.shape[ 0 ]): #plt.text(i, df['y'][i]+0.3, str(df['y'][i]), ha='center', va='bottom', fontsize=15, rotation=0) plt.text(i, df[ 'r' ][i], str (df[ 'r' ][i]), ha = 'center' , va = 'bottom' , fontsize = 12 , rotation = 0 ) #保存与展示 #dpi为图像分辨率, bbox_inches='tight'代表去除空白 #plt.savefig('e:/tj/month/fx1806/公司保费增速与同比.png', dpi=600, bbox_inches='tight') plt.show() |
柱状折线图 -- 合并label
1
2
3
4
5
6
7
8
9
|
fig = plt.figure(figsize = ( 10 , 4 )) ax1 = fig.add_subplot( 111 ) lns1 = ax1.bar( range (ind. sum ()), data.loc[ind, '单号数' ], alpha = . 7 , color = 'b' , label = r '单号数' ) ax2 = ax1.twinx() lns2 = ax2.plot( range (ind. sum ()), data.loc[ind, '用药(包含检查等)种类数' ], color = 'r' , marker = '*' , ms = 4 , linewidth = 1 , label = r '用药(包含检查等)种类数' ) lns = [lns1] + lns2 labs = [l.get_label() for l in lns] ax1.legend(lns, labs, loc = 0 ) plt.show() |
其他条形图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
plt.figure(figsize = ( 10 , 3 )) #重叠条形图 plt.subplot( 121 ) data_hour2015 = pd.DataFrame(np.random.randint( 10 , size = ( 100 ,)), columns = [ 'num' ]) data_hour2016 = pd.DataFrame(np.random.randint( 10 , size = ( 100 ,)), columns = [ 'num' ]) data_hour2017 = pd.DataFrame( - np.random.randint( 10 , size = ( 100 ,)), columns = [ 'num' ]) data_hour2015[ 'num' ].plot.bar(color = 'g' , alpha = 0.6 , label = '2015年' ) data_hour2016[ 'num' ].plot.bar(color = 'r' , alpha = 0.6 , label = '2016年' ) data_hour2017[ 'num' ].plot.bar(color = 'b' , alpha = 0.6 , label = '2017年' ) #plt.ylabel('counts') #plt.title('missing') plt.legend(loc = 'upper right' ) plt.xticks([ 0 , 19 , 39 , 59 , 79 , 99 ], [ 1 , 20 , 40 , 60 , 80 , 100 ]) #二维频数分布图 plt.subplot( 122 ) x = np.random.randn( 1000 ) + 2 y = np.random.randn( 1000 ) + 3 plt.hist2d(x,y,bins = 40 ) plt.show() |
自定义图例 参考
注意:数据点过多会导致部分bar显示不全的情况
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
import matplotlib.pyplot as plt import matplotlib.patches as mpatches colors = [ 'red' , 'green' , 'blue' ] labels = [ '一级医院' , '二级医院' , '三级医院' ] c_map = data[ 'hirate' ]. map ( lambda x:colors[ int (x) - 1 ]).tolist() plt.figure(figsize = ( 8 , 4 )) plt.bar( range ( len (data[ 'hicode' ])), data[ 'counts' ], color = c_map) #width=0.5 #plt.ylim(-0.01, 5000000) # 自定义刻度 plt.xticks(ticks = np.arange( 7 ) * 100 , labels = data[ 'hicode' ][np.arange( 7 ) * 100 ]) # 自定义图例 patches = [mpatches.Patch(color = colors[i], label = "{:s}" . format (labels[i])) for i in range ( len (colors)) ] ax = plt.gca() #box = ax.get_position() #ax.set_position([box.x0, box.y0, box.width , box.height* 0.8]) ax.legend(handles = patches, loc = 0 ) #bbox_to_anchor=(0.95,1.12)设定位置, ncol=1列数 plt.title( '医院编码 - 接诊单号量分布图' ) plt.show() |
并列条形图 -- 参考链接
1
|
df.groupby([ 'Region' , 'Tier' ],sort= True ). sum ()[[ 'Sales2015' , 'Sales2016' ]].unstack().plot(kind= "bar" ,width = .8) |
DataFrame数据绘图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
#柱状图 speed = [ 0.1 , 17.5 , 40 , 48 , 52 , 69 , 88 ] lifespan = [ 2 , 8 , 70 , 1.5 , 25 , 12 , 28 ] index = [ 'snail' , 'pig' , 'elephant' , 'rabbit' , 'giraffe' , 'coyote' , 'horse' ] df = pd.DataFrame({ 'speed' : speed, 'lifespan' : lifespan}, index = index) ax = df.plot.barh(x = 'lifespan' ) #df.plot.bar() #直方图 df = pd.DataFrame(np.random.randint( 1 , 7 , 6000 ), columns = [ 'one' ]) df[ 'two' ] = df[ 'one' ] + np.random.randint( 1 , 7 , 6000 ) ax = df.plot.hist(bins = 12 , alpha = 0.5 ) #箱线图 data = np.random.randn( 25 , 4 ) df = pd.DataFrame(data, columns = list ( 'ABCD' )) ax = df.plot.box() #六边形热力图 n = 10000 df = pd.DataFrame({ 'x' : np.random.randn(n), 'y' : np.random.randn(n)}) ax = df.plot.hexbin(x = 'x' , y = 'y' , gridsize = 20 ) n = 500 df = pd.DataFrame({ 'coord_x' : np.random.uniform( - 3 , 3 , size = n), 'coord_y' : np.random.uniform( 30 , 50 , size = n), 'observations' : np.random.randint( 1 , 5 , size = n)}) ax = df.plot.hexbin(x = 'coord_x' , y = 'coord_y' , C = 'observations' , reduce_C_function = np. sum , gridsize = 10 , cmap = "viridis" ) #核密度 df = pd.DataFrame({ 'x' : [ 1 , 2 , 2.5 , 3 , 3.5 , 4 , 5 ], 'y' : [ 4 , 4 , 4.5 , 5 , 5.5 , 6 , 6 ],}) ax = df.plot.kde() ax = df.plot.kde(bw_method = 0.3 ) ax = df.plot.kde(bw_method = 3 ) ax = df.plot.kde(ind = [ 1 , 2 , 3 , 4 , 5 , 6 ]) #线图 df = pd.DataFrame({ 'pig' : [ 20 , 18 , 489 , 675 , 1776 ], 'horse' : [ 4 , 25 , 281 , 600 , 1900 ]}, index = [ 1990 , 1997 , 2003 , 2009 , 2014 ]) lines = df.plot.line() axes = df.plot.line(subplots = True ) lines = df.plot.line(x = 'pig' , y = 'horse' ) #饼图 df = pd.DataFrame({ 'mass' : [ 0.330 , 4.87 , 5.97 ], 'radius' : [ 2439.7 , 6051.8 , 6378.1 ]}, index = [ 'Mercury' , 'Venus' , 'Earth' ]) ax = df.plot.pie(y = 'mass' , subplots = True , figsize = ( 6 , 3 )) ax = df.plot.pie(y = 'radius' , subplots = True , figsize = ( 6 , 3 )) #散点图 df = pd.DataFrame([[ 5.1 , 3.5 , 0 ], [ 4.9 , 3.0 , 0 ], [ 7.0 , 3.2 , 1 ], [ 6.4 , 3.2 , 1 ], [ 5.9 , 3.0 , 2 ]], columns = [ 'length' , 'width' , 'species' ]) ax1 = df.plot.scatter(x = 'length' , y = 'width' , c = 'DarkBlue' ) ax2 = df.plot.scatter(x = 'length' , y = 'width' , c = 'species' , colormap = 'viridis' ) |
矩阵图
1
2
3
4
5
6
7
8
|
import pandas as pd x = pd.DataFrame(np.random.randn( 200 , 4 ) * 100 , columns = [ 'A' , 'B' , 'C' , 'D' ]) cs = np.random.randint( 3 , size = 200 ) #c='k',cmap=mglearn.cm3 pd.scatter_matrix(x, figsize = ( 8 , 8 ), c = cs, marker = '+' , diagonal = 'hist' , hist_kwds = { 'bins' : 10 , 'edgecolor' : 'k' }, alpha = 0.8 , range_padding = 0.1 ) plt.show() |
热力图
1
2
3
4
5
6
|
#corr = df.corr() flights = sns.load_dataset( "flights" ) flights = flights.pivot( "month" , "year" , "passengers" ) fig, ax = plt.subplots(figsize = ( 6 , 4.5 )) sns.heatmap(flights, annot = True ,fmt = "d" ,linewidths = . 5 , ax = ax) #cmap='RdBu' plt.show() |
violinplot图
1
2
3
4
5
6
7
8
9
10
|
from sklearn.datasets import load_iris iris = load_iris() df = pd.DataFrame(iris[ 'data' ], columns = iris[ 'feature_names' ]) df[ 'target' ] = iris[ 'target' ]<br> plt.figure(figsize = ( 9 , 8 )) for column_index, column in enumerate (df.columns): if column = = 'target' : continue plt.subplot( 2 , 2 , column_index + 1 ) sns.violinplot(x = 'target' , y = column, data = df) |
数学教科书上展示的图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
plt.figure( 1 ) x = np.linspace( - np.pi,np.pi, 256 ,endpoint = True ) co, si = np.cos(x), np.sin(x) plt.plot(x, co, color = "blue" , linewidth = 1.0 , linestyle = "-" , label = "cos" , alpha = 0.5 ) plt.plot(x, si, "r*" , markersize = 1 , label = "sin" ) #创建一个坐标轴的编辑器 ax = plt.gca() #隐藏右边和上边的轴线,将左边和下边的轴线移到中间(数据域),把刻度数据放到下边和左边 ax.spines[ 'right' ].set_color( "none" ) ax.spines[ 'top' ].set_color( "none" ) ax.spines[ 'left' ].set_position(( "data" , 0 )) ax.spines[ 'bottom' ].set_position(( "data" , 0 )) ax.xaxis.set_ticks_position( "bottom" ) ax.yaxis.set_ticks_position( "left" ) #设置刻度及刻度标签格式 plt.xticks([ - np.pi, - np.pi / 2 , 0 ,np.pi / 2 ,np.pi], [r '$-pi$' ,r '$-pi/2$' ,r '$0$' ,r '$pi/2$' ,r '$pi$' ]) plt.yticks(np.linspace( - 1 , 1 , 5 , endpoint = True )) for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize( 10 ) #字体 label.set_bbox( dict (facecolor = "white" , edgecolor = "None" , alpha = 0.2 )) #色彩填充 plt.fill_between(x, np. abs (x)< 0.5 , co, co> 0.5 , color = "red" , alpha = 0.2 ) #添加注释 ''' xy为标注值,xycoords="data"表示使用原始坐标 xytext:文本位置,textcoords设置其坐标规范(坐标偏移) arrowprops设置箭头属性(参数类型为字典), arrowstyle为箭头风格, connectionstyle为连接风格 ''' t = 1 plt.plot([t,t], [ 0 ,np.cos(t)], 'y' , color = 'yellow' , linewidth = 2 , linestyle = "--" ) plt.scatter([t,t], [ 0 ,np.cos(t)], 50 , color = 'red' ) plt.annotate( "cos(1)" , xy = (t, np.cos(t)), xycoords = "data" , xytext = ( + 10 , + 20 ), textcoords = "offset points" , fontsize = 12 , arrowprops = dict (arrowstyle = "->" , connectionstyle = "arc3,rad=.2" )) t = 2 * np.pi / 3 plt.plot([t,t], [ 0 ,np.sin(t)], 'y' , color = 'yellow' , linewidth = 2 , linestyle = "--" ) plt.scatter([t,t],[ 0 ,np.sin(t)], 50 , color = 'green' ) plt.annotate(r '$sin(frac{2pi}{3})=frac{sqrt{3}}{2}$' , xy = (t,np.sin(t)), xycoords = 'data' , xytext = ( + 10 , + 30 ), textcoords = 'offset points' , fontsize = 12 , arrowprops = dict (arrowstyle = "->" , connectionstyle = "arc3,rad=.2" )) plt.title( "cos&sin" ) plt.legend(loc = "upper left" ) plt.grid(ls = '--' ) plt.axis([ - 3.15 , 3.15 , - 1.05 , 1.05 ]) plt.show() |
插值图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import griddata def func(x, y): return x * ( 1 - x) * np.cos( 4 * np.pi * x) * np.sin( 4 * np.pi * y * * 2 ) * * 2 points = np.random.rand( 1000 , 2 ) values = func(points[:, 0 ], points[:, 1 ]) grid_x, grid_y = np.mgrid[ 0 : 1 : 100j , 0 : 1 : 200j ] grid_z0 = griddata(points, values, (grid_x, grid_y), method = 'nearest' ) grid_z1 = griddata(points, values, (grid_x, grid_y), method = 'linear' ) grid_z2 = griddata(points, values, (grid_x, grid_y), method = 'cubic' ) plt.subplot( 221 ) plt.imshow(func(grid_x, grid_y).T, extent = ( 0 , 1 , 0 , 1 ), origin = 'lower' ) plt.plot(points[:, 0 ], points[:, 1 ], 'k.' , ms = 1 ) plt.title( 'Original' ) plt.subplot( 222 ) plt.imshow(grid_z0.T, extent = ( 0 , 1 , 0 , 1 ), origin = 'lower' ) plt.title( 'Nearest' ) plt.subplot( 223 ) plt.imshow(grid_z1.T, extent = ( 0 , 1 , 0 , 1 ), origin = 'lower' ) plt.title( 'Linear' ) plt.subplot( 224 ) plt.imshow(grid_z2.T, extent = ( 0 , 1 , 0 , 1 ), origin = 'lower' ) plt.title( 'Cubic' ) plt.gcf().set_size_inches( 6 , 6 ) plt.show() |
等高线图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
import numpy as np import matplotlib.pyplot as plt #import matplotlib as mpl #from matplotlib import colors #建立步长为0.01,即每隔0.01取一个点 step = 0.01 x = np.arange( - 10 , 10 ,step) y = np.arange( - 10 , 10 ,step) #也可以用x = np.linspace(-10,10,100)表示从-10到10,分100份 #将原始数据变成网格数据形式 X,Y = np.meshgrid(x,y) Z = X * * 2 + Y * * 2 #等高线图 plt.figure(figsize = ( 10 , 6 )) #设置画布大小 plt.subplot( 231 ) plt.contour(X,Y,Z) #等高线 plt.subplot( 232 ) contour = plt.contour(X,Y,Z, [ 20 , 40 , 60 ], colors = 'k' ) #只画z=20和40的线,黑色 plt.clabel(contour, fontsize = 10 , colors = ( 'k' , 'r' , 'b' ), fmt = '%.4f' ) #标注高度(字体,颜色,小数) plt.subplot( 233 ) contour = plt.contour(X,Y,Z, 4 , colors = 'k' ) #只画z=20和40的线,黑色 plt.clabel(contour, fontsize = 10 , colors = 'b' , fmt = '%.2f' ) #标注高度(字体,颜色,小数) plt.subplot( 234 ) plt.contourf(X,Y,Z) #填充颜色,f即filled plt.xticks(()) #去掉刻度 plt.yticks(()) plt.subplot( 235 ) cset = plt.contourf(X,Y,Z, 6 ,cmap = plt.cm.hot) plt.colorbar(cset) plt.subplot( 236 ) cset = plt.contourf(X,Y,Z, 6 ,alpha = 1 ,vmin = 0 ,vmax = 100 , cmap = 'hot_r' ) #6种颜色, 颜色取反 plt.colorbar(cset) contour = plt.contour(X,Y,Z, 8 ,colors = 'k' ) #8条线 plt.clabel(contour,fontsize = 10 ,colors = 'k' ) plt.scatter( 0 , 0 ,color = 'r' ) plt.show() #colorslist = ['w','gainsboro','gray','aqua'] #将颜色条命名为mylist,一共插值颜色条50个 #cmaps = colors.LinearSegmentedColormap.from_list('mylist',colorslist,N=200) #cmap='hot' 'BuGn', plt.get_cmap('YlOrBr_r'), mpl.cm.hot |
聚类结果的可视化(1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
from itertools import cycle import matplotlib.pyplot as plt plt.close( 'all' ) plt.figure(figsize = ( 12 , 4 )) plt.clf() unique_labels = set (db.labels_) core_samples_mask = np.zeros_like(db.labels_, dtype = bool ) # 设置一个样本个数长度的全false向量 core_samples_mask[db.core_sample_indices_] = True #将核心样本部分设置为true # 使用黑色标注离散点 plt.subplot( 121 ) colors = [plt.cm.Spectral(each) for each in np.linspace( 0 , 1 , len (unique_labels))] for k, col in zip (unique_labels, colors): if k = = - 1 : # 聚类结果为-1的样本为离散点 # 使用黑色绘制离散点 col = [ 0 , 0 , 0 , 1 ] class_member_mask = (db.labels_ = = k) # 将所有属于该聚类的样本位置置为true xy = X[class_member_mask & core_samples_mask] # 将所有属于该类的核心样本取出,使用大图标绘制 plt.plot(xy[:, 0 ], xy[:, 2 ], 'o' , markerfacecolor = tuple (col),markeredgecolor = 'k' , markersize = 14 ) xy = X[class_member_mask & ~core_samples_mask] # 将所有属于该类的非核心样本取出,使用小图标绘制 plt.plot(xy[:, 0 ], xy[:, 2 ], 'o' , markerfacecolor = tuple (col),markeredgecolor = 'k' , markersize = 6 ) plt.title( '对医院医疗耗材的异常值检测最佳聚类数: %d' % n_clusters_) plt.xlabel(r 'CQ类材料使用频率(%)' ) plt.ylabel(r '单价200元以上CL类使用频率(%)' ) #plt.show() plt.subplot( 122 ) colors = cycle( 'bgrcmybgrcmybgrcmybgrcmy' ) for k, col in zip (unique_labels, colors): class_member_mask = db.labels_ = = k if k = = - 1 : plt.plot(X[class_member_mask, 0 ], X[class_member_mask, 2 ], 'k' + '.' ) else : cluster_center = X[class_member_mask & core_samples_mask].mean(axis = 0 ) plt.plot(X[class_member_mask, 0 ], X[class_member_mask, 2 ], col + '.' ) plt.plot(cluster_center[ 0 ], cluster_center[ 2 ], 'o' , markerfacecolor = col, markeredgecolor = 'k' , markersize = 14 ) for x in X[class_member_mask]: plt.plot([cluster_center[ 0 ], x[ 0 ]], [cluster_center[ 2 ], x[ 2 ]], col) plt.title( 'Estimated number of clusters: %d' % n_clusters_) plt.xlabel(r 'CQ类材料使用频率(%)' ) plt.ylabel(r '单价200元以上CL类使用频率(%)' ) plt.show() |
聚类结果的可视化(2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
print (__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed( 42 ) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len (np.unique(digits.target)) labels = digits.target sample_size = 300 print ( "n_digits: %d, n_samples %d, n_features %d" % (n_digits, n_samples, n_features)) print ( 82 * '_' ) print ( 'init time inertia homo compl v-meas ARI AMI silhouette' ) def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print ( '%-9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_, average_method = 'arithmetic' ), metrics.silhouette_score(data, estimator.labels_, metric = 'euclidean' , sample_size = sample_size))) bench_k_means(KMeans(init = 'k-means++' , n_clusters = n_digits, n_init = 10 ), name = "k-means++" , data = data) bench_k_means(KMeans(init = 'random' , n_clusters = n_digits, n_init = 10 ), name = "random" , data = data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components = n_digits).fit(data) bench_k_means(KMeans(init = pca.components_, n_clusters = n_digits, n_init = 1 ), name = "PCA-based" , data = data) print ( 82 * '_' ) # ############################################################################# # Visualize the results on PCA-reduced data reduced_data = PCA(n_components = 2 ).fit_transform(data) kmeans = KMeans(init = 'k-means++' , n_clusters = n_digits, n_init = 10 ) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = . 02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0 ]. min () - 1 , reduced_data[:, 0 ]. max () + 1 y_min, y_max = reduced_data[:, 1 ]. min () - 1 , reduced_data[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure( 1 ) plt.clf() plt.imshow(Z, interpolation = 'nearest' , extent = (xx. min (), xx. max (), yy. min (), yy. max ()), cmap = plt.cm.Paired, aspect = 'auto' , origin = 'lower' ) plt.plot(reduced_data[:, 0 ], reduced_data[:, 1 ], 'k.' , markersize = 2 ) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0 ], centroids[:, 1 ], marker = 'x' , s = 169 , linewidths = 3 , color = 'w' , zorder = 10 ) plt.title( 'K-means clustering on the digits dataset (PCA-reduced data)
' 'Centroids are marked with white cross' ) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show() |
决策树可视化
1. 安装绘图软件GraphViz(graphviz-2.38.zip 下载),并将解压路径添加到环境变量(通过我的电脑改环境变量貌似不行)
1
2
3
4
5
6
|
# 添加环境变量 import os os.environ[ "PATH" ] + = os.pathsep + 'D:/graphviz-2.38/release/bin/' # 安装相关包 pip install graphviz pydotplus |
2. 绘制决策树
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
#import io #import graphviz import pydotplus from sklearn.datasets import load_iris from sklearn import tree from IPython.display import Image iris = load_iris() clf = tree.DecisionTreeClassifier() clf = clf.fit(iris.data, iris.target) #tree.plot_tree(clf.fit(iris.data, iris.target)) #dot_data = tree.export_graphviz(clf, out_file=None) #黑白 dot_data = tree.export_graphviz(clf, out_file = None , feature_names = iris.feature_names, class_names = iris.target_names, filled = True , rounded = True , special_characters = True ) #dot_data = io.StringIO() #tree.export_graphviz(clf, out_file=dot_data) #graph = graphviz.Source(dot_data) #graph.render("iris") #导出为iris.pdf #graph graph = pydotplus.graphviz.graph_from_dot_data(dot_data) Image(graph.create_png()) # --------------------------------------------------- #from numpy import loadtxt from sklearn.datasets import load_iris from xgboost import XGBClassifier from xgboost import plot_tree import matplotlib.pyplot as plt # load data #iris = loadtxt('pima-indians-diabetes.csv', delimiter=",") iris = load_iris() # split data into X and y X = iris.data y = iris.target # fit model no training data model = XGBClassifier() model.fit(X, y) # plot single tree fig = plt.figure(dpi = 180 ) ax = plt.subplot( 1 , 1 , 1 ) plot_tree(model, num_trees = 4 , ax = ax) plt.show() |
时间序列数据可视化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
import numpy as np import pandas as pd import matplotlib.pyplot as plt #import seaborn as sns from datetime import datetime from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller #import statsmodels.api as sm #import statsmodels.formula.api as smf #import statsmodels.tsa.api as smt #sm.graphics.tsa.plot_acf from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from matplotlib.ticker import MultipleLocator, FormatStrFormatter def plot_acf_pacf(y, lags = 12 ): plt.figure(figsize = ( 14 , 8 )) layout = ( 3 , 2 ) def tsplot(y, layout, i, plotlags = 20 , title = ''): ts_ax = plt.subplot2grid(layout, ( 0 , i)) acf_ax = plt.subplot2grid(layout, ( 1 , i)) pacf_ax = plt.subplot2grid(layout, ( 2 , i)) y.plot(ax = ts_ax) ts_ax.set_title(title) #y.plot(ax=hist_ax, kind='hist', bins=25) #hist_ax.set_title('Histogram') #设置主刻度标签文本的格式 #xmajorFormatter = FormatStrFormatter('%1.1f') #设置x轴标签文本的格式 #ax.xaxis.set_major_formatter(xmajorFormatter) #设置主刻度标签的位置 #xmajorLocator = MultipleLocator(20) #将x主刻度标签设置为20的倍数 #ax.xaxis.set_major_locator(xmajorLocator) plot_acf(y, lags = plotlags, ax = acf_ax) #lags=20 #acf_ax.axhline(y=0.1,ls="--",c="r") #添加水平直线 #acf_ax.axhline(y=-0.1,linestyle="--",c="r") #添加水平直线 #plt.axvline(x=4,ls="-",c="green") #添加垂直直线 #plt.plot([0, 0.1], [lags, 0.1], linestyle='--', dashes=(5, 5)) #dashes分别表示线和空格长度 #acf_ax.xaxis.set_ticks([i for i in range(0,plotlags+1,2)]) acf_ax.set_xticks([i for i in range ( 0 ,plotlags + 1 , 2 )]) plot_pacf(y, lags = plotlags, ax = pacf_ax) #pacf_ax.axhline(y=0.1,ls="--",c="r") #添加水平直线 #pacf_ax.axhline(y=-0.1,linestyle="--",c="r") #添加水平直线 #pacf_ax.xaxis.set_ticks([i for i in range(0,plotlags+1,2)]) pacf_ax.set_xticks([i for i in range ( 0 ,plotlags + 1 , 2 )]) #[ax.set_xlim(0) for ax in [acf_ax, pacf_ax]] #sns.despine() tsplot(y, layout, 0 , plotlags = 20 , title = 'Original Series' ) tsplot(y.diff(lags).dropna(), layout, 1 , plotlags = 20 , title = '%sst Order Differencing' % (lags)) plt.tight_layout() plt.show() plot_acf_pacf(income2, lags = 12 ) plot_acf_pacf(payment2, lags = 12 ) |