zoukankan      html  css  js  c++  java
  • 算法的性能、特点

    算法的复杂度 

      参考链接:https://blog.csdn.net/itachi85/article/details/54882603

      算法的复杂度主要分为时间复杂度和空间复杂度,时间复杂度评估算法的运行时间,体现对处理器的使用程度。空间复杂度评估算法所需要的运行内存,体现对计算机内存的使用程度。

      在设计算法时,一般需要根据运行环境来权衡时间复杂度和空间复杂度,折中选取一个平衡点。不过时间复杂度显然是更容易产生问题,所以算法研究的主要也就是时间复杂度,不特别说明的情况下,复杂度也就是指的是时间复杂度

    时间复杂度

      时间频度:

           一个算法中的语句(比如在循环里面的,而循环不算)执行次数称为语句频度或时间频度。记为T(n)。一个算法的运行时间是不能计算出来的,必须通过上机计算,而且在不同的处理器上也有差别;同时我们也不必要精确知道算法的运行时间,只需要比较两个算法,看谁花费的时间更少就行了。而算法的运行时间和算法中语句的执行次数成正相关。时间频度记作T(n)

      

      时间复杂度

      前面介绍的时间频度T(n)中的n代表问题的规模,当n不断改变时,时间频度也会不断发生变化,但为了了解他变化的规律,我们引入了时间复杂度。

      一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

      在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

       

    大O表示法

      前面的通过大O来表示时间复杂度的方法,称为大O表示法

      算法复杂度一般分为最好情况、最坏情况、平均情况三种。由于平均情况一般和最坏情况持平,而且评估最坏情况能做好充足的准备,所以我们设计算法的时候一般都是估算的最坏情况下的时间复杂度。

      常见的时间复杂度

      常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。

     

    推导大O阶

      参考链接:https://blog.csdn.net/firefly_2002/article/details/8008987

         时间复杂度是总运算次数表达式中受n的变化影响最大的那一项

      算出来T(n),然后求T(n)的同数量级,若同数量级他们间能求极限,就是他了

    一些例子

      对于for循环,常用的是计算有几轮循环,每轮的内层语句执行有多少次

      这个例子

    def select_sort2(collection):
        '''选择排序2,通过交换移动位置'''
        #通过交换腾出位置,我竟然没想到,而且这样的好处在于假如一个元素的位置是正确的,在排序的过程中就不用动他
        #所以说,选择排序只需要n-1次交换,他和插入排序的不同再于他总是从未排序的序列中选出来最值,等于说他在未排序中遍历,而插入排序是从未排序
        #的队头取值,在已排序的部分中遍历
        length=len(collection)
        def min_customize(collection):
            min_index=0
            for i in range(len(collection)):
                if collection[i]<collection[min_index]:
                    min_index=i
            return min_index
        for loop_index in range(length):
            min_index=min_customize(collection[loop_index:])
            #注意返回的index是部分数组中的
            collection[min_index+loop_index],collection[loop_index]=collection[loop_index],collection[min_index+loop_index]
        return collection
    

      需要n次循环(在最后的表达式中体现的是 里面的语句执行的次数 有几项),每次循环中需要一次寻找,这个寻找通过for循环来控制比较的次数,遍历剩余未排序的元素,n次寻找中,每个寻找的比较次数为(n,n-1,n-2,....1),则T(n)=【n+(n-1)+(n-2)+.....+1】(一共n项)=n*(n+1)/2,则T(n)的同数量级是n^2,所以T(n)=O(n^2)

      主要关注for循环里面的语句执行了几次,他和for循环执行的次数是相等的。

      外层循环执行n次,所以T(n)表达式有n项,而for循环里面还有一个循环,循环里面就是常数操作了,所以每一项都执行这个for循环控制的次数

      

     for(i=1;i<=n;++i)
      {
         for(j=1;j<=n;++j)
         {
             c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
              for(k=1;k<=n;++k)
                   c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
         }
      }
      则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
      则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
      则该算法的 时间复杂度:T(n)=O(n^3)
    

     

      常数阶

      int sum = 0,n = 100; //执行一次  
      sum = (1+n)*n/2; //执行一次  
      System.out.println (sum); //执行一次 
    

      

     for(i=1;i<=n;i++)   //循环了n*n次,当然是O(n^2)
                for(j=1;j<=n;j++)
                     s++;
    
    for(i=1;i<=n;i++)//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
                for(j=i;j<=n;j++)
                     s++;
    

      #对与for循环中有内循环中如下面这样的,就把不同i取值对应的各种循环加起来在找规律求和就好了

     for(i=1;i<=n;i++)//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
                for(j=1;j<=i;j++)
                     s++;
    

      

    i=1;k=0;
    while(i<=n-1){ k+=10*i;    i++; }//循环了n-1≈n次,所以是O(n)

      

    for(i=1;i<=n;i++)
       for(j=1;j<=i;j++)
            for(k=1;k<=j;k++)
                 x=x+1;
    循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
    另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
    log(a,b)=log(c,b)/log(c,a)
    所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的
    

    如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

    当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

    我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

    此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

    “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

    这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

     

    O(1)

    Temp=i;i=j;j=temp;                    
    

        以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

    O(n^2)

    2.1. 交换i和j的内容
         sum=0;                 (一次)
         for(i=1;i<=n;i++)       (n次 )
            for(j=1;j<=n;j++) (n^2次 )
             sum++;       (n^2次 )
    解:T(n)=2n^2+n+1 =O(n^2)
    

      

    for (i=1;i<n;i++)
        {
            y=y+1;         ①   
            for (j=0;j<=(2*n);j++)    
               x++;        ②      
        }         
    解: 语句1的频度是n-1
              语句2的频度是(n-1)*(2n+1)=2n^2-n-1
              f(n)=2n^2-n-1+(n-1)=2n^2-2
              该程序的时间复杂度T(n)=O(n^2).         
    

      

    O(n)      
                                                          
    2.3.
        a=0;
        b=1;  
    

      

     

    算法的稳定性:

      对于不稳定的排序算法,只要举出一个实例,即可说明它的不稳定性;而对于稳定的排序算法,必须对算法进行分析从而得到稳定的特性。需要注意的是,排序算法是否为稳定的是由具体算法决定的,不稳定的算法在某种条件下可以变为稳定的算法,而稳定的算法在某种条件下也可以变为不稳定的算法。

      例如,对于冒泡排序算法,原本是稳定的排序算法,如果将记录交换的条件改成r[j]>=r[j+1],则两个相等的记录就会交换位置,从而变成不稳定的算法。

    再如,快速排序原本是不稳定的排序方法,但若待排序记录中只有一组具有相同关键码的记录,而选择的轴值恰好是这组相同关键码中的一个,此时的快速排序就是稳定的。

  • 相关阅读:
    TWinControl、TCustomControl和TGraphicControl对WM_PAINT消息的三种不同处理(虚函数的特点就是升升降降)
    VCL里的构造函数
    从良难
    TTimer源码研究
    Delphi的RTTI(许多参考链接)
    对ShortCut和TWMKey的研究
    TTimer很特殊
    TEdit的创建与显示过程
    VMware vSphere 服务器虚拟化之二十六 桌面虚拟化之View Persona Management
    Delphi Math里的基本函数,以及浮点数比较函数
  • 原文地址:https://www.cnblogs.com/Gaoqiking/p/11161618.html
Copyright © 2011-2022 走看看