【图像算法】图像特征:三个图像显著性区域特征提取方法
SkySeraph Aug 11st 2011 HQU
Email:zgzhaobo@gmail.com QQ:452728574
Latest Modified Date:Aug 11st 2011 HQU
-------------------------------------------------------------------------------------------------------------------------------
》第一种方法:
原理:Frequency-tuned Salient Region Detection.CVPR.2009
定义:
简述:
三步,滤波+颜色空间转换+计算SaliencyMap(见源码)
效果:
待测试图(后同)
结果1:(原作者代码测试结果)
结果2:(我用OpenCV改写的代码测试结果)
结果3:(我的改进测试(空间选择不同))
源码(matlab):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
%--------------------------------------------------------- % Read image and blur it with a 3x3 or 5x5 Gaussian filter %--------------------------------------------------------- img = imread( 'input_image.jpg' );%Provide input image path gfrgb = imfilter(img, fspecial( 'gaussian' , 3, 3), 'symmetric' , 'conv' ); %--------------------------------------------------------- % Perform sRGB to CIE Lab color space conversion ( using D65) %--------------------------------------------------------- cform = makecform( 'srgb2lab' , 'whitepoint' , whitepoint( 'd65' )); lab = applycform(gfrgb,cform); %--------------------------------------------------------- % Compute Lab average values (note that in the paper this % average is found from the unblurred original image, but % the results are quite similar) %--------------------------------------------------------- l = double (lab(:,:,1)); lm = mean(mean(l)); a = double (lab(:,:,2)); am = mean(mean(a)); b = double (lab(:,:,3)); bm = mean(mean(b)); %--------------------------------------------------------- % Finally compute the saliency map and display it. %--------------------------------------------------------- sm = (l-lm).^2 + (a-am).^2 + (b-bm).^2; imshow(sm,[]); %-------------------------------------------------------- |
------------------------------------------------------------------------------------------------------------------------------
》第二种方法:
原理:
Y. Zhai and M. Shah. Visual attention detection in video sequences using spatiotemporal cues. In ACM Multimedia, pages 815–824. ACM,2006.
定义:
效果:
------------------------------------------------------------------------------------------------------------------------------
》第三种方法:
原理:http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spectralresidual.html
源码(matlab):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
clear clc %% Read image from file inImg = im2double(rgb2gray(imread( 'yourImage.jpg' ))); inImg = imresize(inImg, 64/size(inImg, 2)); %% Spectral Residual myFFT = fft2(inImg); myLogAmplitude = log ( abs (myFFT)); myPhase = angle(myFFT); mySpectralResidual = myLogAmplitude - imfilter(myLogAmplitude, fspecial( 'average' , 3), 'replicate' ); saliencyMap = abs (ifft2( exp (mySpectralResidual + i*myPhase))).^2; %% After Effect saliencyMap = mat2gray(imfilter(saliencyMap, fspecial( 'gaussian' , [10, 10], 2.5))); imshow(saliencyMap); |
效果:
------------------------------------------------------------------------------------------------------------------------------
Author: SKySeraph
Email/GTalk: zgzhaobo@gmail.com QQ:452728574
From: http://www.cnblogs.com/skyseraph/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.