zoukankan      html  css  js  c++  java
  • 【图像算法】图像特征:三个图像显著性区域特征提取方法

    【图像算法】图像特征:三个图像显著性区域特征提取方法

     SkySeraph Aug 11st 2011  HQU

    Email:zgzhaobo@gmail.com    QQ:452728574

    Latest Modified Date:Aug 11st 2011  HQU

    -------------------------------------------------------------------------------------------------------------------------------

    》第一种方法:

    原理:Frequency-tuned Salient Region Detection.CVPR.2009

    定义:

    简述

    三步,滤波+颜色空间转换+计算SaliencyMap(见源码)

    效果

    待测试图(后同)

    结果1:(原作者代码测试结果)

    结果2:(我用OpenCV改写的代码测试结果)

    结果3:(我的改进测试(空间选择不同))

    源码(matlab):

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    %---------------------------------------------------------
    % Read image and blur it with a 3x3 or 5x5 Gaussian filter
    %---------------------------------------------------------
    img = imread('input_image.jpg');%Provide input image path
    gfrgb = imfilter(img, fspecial('gaussian', 3, 3), 'symmetric''conv');
    %---------------------------------------------------------
    % Perform sRGB to CIE Lab color space conversion (using D65)
    %---------------------------------------------------------
    cform = makecform('srgb2lab''whitepoint', whitepoint('d65'));
    lab = applycform(gfrgb,cform);
    %---------------------------------------------------------
    % Compute Lab average values (note that in the paper this
    % average is found from the unblurred original image, but
    % the results are quite similar)
    %---------------------------------------------------------
    l = double(lab(:,:,1)); lm = mean(mean(l));
    a = double(lab(:,:,2)); am = mean(mean(a));
    b = double(lab(:,:,3)); bm = mean(mean(b));
    %---------------------------------------------------------
    % Finally compute the saliency map and display it.
    %---------------------------------------------------------
    sm = (l-lm).^2 + (a-am).^2 + (b-bm).^2;
    imshow(sm,[]);
    %--------------------------------------------------------

    ------------------------------------------------------------------------------------------------------------------------------

    》第二种方法:

    原理:

    Y. Zhai and M. Shah. Visual attention detection in video sequences using spatiotemporal cues. In ACM Multimedia, pages 815–824. ACM,2006.

    定义:

    效果:

    ------------------------------------------------------------------------------------------------------------------------------

    》第三种方法:

    原理:http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spectralresidual.html

    源码(matlab):

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    clear
    clc
     
    %% Read image from file
    inImg = im2double(rgb2gray(imread('yourImage.jpg')));
    inImg = imresize(inImg, 64/size(inImg, 2));
     
    %% Spectral Residual
    myFFT = fft2(inImg);
    myLogAmplitude = log(abs(myFFT));
    myPhase = angle(myFFT);
    mySpectralResidual = myLogAmplitude - imfilter(myLogAmplitude, fspecial('average', 3), 'replicate');
    saliencyMap = abs(ifft2(exp(mySpectralResidual + i*myPhase))).^2;
     
    %% After Effect
    saliencyMap = mat2gray(imfilter(saliencyMap, fspecial('gaussian', [10, 10], 2.5)));
    imshow(saliencyMap);

    效果: 

    ------------------------------------------------------------------------------------------------------------------------------

    Author:         SKySeraph

    Email/GTalk: zgzhaobo@gmail.com    QQ:452728574

    From:         http://www.cnblogs.com/skyseraph/

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.

  • 相关阅读:
    Redis单实例数据迁移到集群
    使用IDEA快速搭建基于Maven的SpringBoot项目(集成使用Redis)
    Linux下Mysql每天自动备份
    java调用webservice
    springmvc后台生成验证码
    Zabbix 监控端口状态并邮件报警
    Zabbix 通过smtp 邮件报警
    Zabbix安装(server和agent)及基本配置
    Spark之 Spark Streaming整合kafka(Java实现版本)
    openlayer 5 获取中心点
  • 原文地址:https://www.cnblogs.com/GarfieldEr007/p/5459634.html
Copyright © 2011-2022 走看看