1. Power Law distribution
来自 Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Serves
和 Community-Based Bayesian Aggregation 和 Aggregating Crowdsourced Binary Ratings
2. Anchoring effect
来自 Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Serves
还在上一篇文章中见过,但不记得了,后面记起来了再补充。
3. uninformative priors
来自 Sequential crowdsourced labeling as an epsilon-greedy exploration in a Markov Decision Process
19年寒假重读PRML 前两章时发现也讲了此
4. machine-learning based vs. linear-algebraic based
machine-learning based 通常依赖于 EM 算法,其对工人-任务分配图上没有要求,但不提供任何最终结果的理论保证。
linear-algebraic based 通常需要任务分配图是 random regular 或者是 complete, 这样才可以提供理论保证。
通常众包中的算法可以分为这两类,这一说法最早来自于 paper Aggregating Crowdsourced Binary Ratings
在后一篇paper Reputation-based worker Filtering in Crowdsourcing 也用到的这一说法。
4. Expectation-Propagation (EP) 消息传递算法
community-Based Bayesian Aggragtion models for Crowdsourcing
应该 PRML 上也讲了此