zoukankan      html  css  js  c++  java
  • 阅读众包文献中一些值得mark 的小收获

    1. Power Law distribution

    来自 Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Serves

    和 Community-Based Bayesian Aggregation 和 Aggregating Crowdsourced Binary Ratings

    2. Anchoring effect

    来自 Whom to Ask? Jury Selection for Decision Making Tasks on Micro-blog Serves

    还在上一篇文章中见过,但不记得了,后面记起来了再补充。

    3. uninformative priors

    来自 Sequential crowdsourced labeling as an epsilon-greedy exploration in a Markov Decision Process

    19年寒假重读PRML 前两章时发现也讲了此

    4. machine-learning based vs. linear-algebraic based

    machine-learning based 通常依赖于 EM 算法,其对工人-任务分配图上没有要求,但不提供任何最终结果的理论保证。

    linear-algebraic based 通常需要任务分配图是 random regular 或者是 complete, 这样才可以提供理论保证。

    通常众包中的算法可以分为这两类,这一说法最早来自于 paper Aggregating Crowdsourced Binary Ratings

    在后一篇paper Reputation-based worker Filtering in Crowdsourcing 也用到的这一说法。

    4. Expectation-Propagation (EP) 消息传递算法

    community-Based Bayesian Aggragtion models for Crowdsourcing

    应该 PRML 上也讲了此

  • 相关阅读:
    Nodejs-原型链污染
    dpwwn-02靶机渗透
    dpwwn-01靶机渗透
    Bulldog1靶机渗透
    php+html实现用户登录退出
    DC4靶机
    vulnhub-Os-hackNos-3
    Linux系统解析XML中文乱问题
    idea添加database
    PL/SQL学习笔记
  • 原文地址:https://www.cnblogs.com/Gelthin2017/p/10520265.html
Copyright © 2011-2022 走看看