zoukankan      html  css  js  c++  java
  • 笔记-Recursive Queries

    Recursive Queries


    [m_{l,r}= extrm{id}(max_{i=l}^r a_i)\ f(l,r)= egin{cases} (r-l+1)+f(l,m_{l,r}-1)+f(m_{l,r}+1,r)& extrm{if } lle r\ 0& extrm{else}\ end{cases} ]

    (L_i=max{j}(j<i,a_j>a_i))(R_i=min{j}(j>i,a_j>a_i))

    考虑每个 (iin[l,r]) 成为 (m_{L_i+1,R_i-1}) 时对答案的贡献:

    [ extrm{len}Big([max(l,L_i+1),min(r,R_i-1)]Big) ]

    [ herefore f(l,r)=sum_{i=l}^rmin(r,R_i-1)-max(l,L_i+1)+1 ]


    Code

    #include <bits/stdc++.h>
    using namespace std;
    
    //Start
    typedef long long ll;
    typedef double db;
    #define mp(a,b) make_pair(a,b)
    #define x(a) a.first
    #define y(a) a.second
    #define b(a) a.begin()
    #define e(a) a.end()
    #define sz(a) int((a).size())
    #define pb(a) push_back(a)
    const int inf=0x3f3f3f3f;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    
    //Data
    const int N=1e6;
    int n,m,a[N+7],ql[N+7],qr[N+7];
    int l[N+7],r[N+7];
    vector<pair<int,int> > st[N+7];
    ll ans[N+7];
    typedef vector<ll> bit;
    bit cnt,sm;
    void add(bit&c,int x,ll y){for(;x<sz(c);x+=x&-x) c[x]+=y;}
    ll sum(bit&c,int x){ll y=0;for(;x;x-=x&-x) y+=c[x];return y;}
    ll sum(bit&c,int x,int y){return sum(c,y)-sum(c,x-1);}
    
    //Main
    int main(){
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    	for(int i=1;i<=m;i++) scanf("%d",&ql[i]),st[ql[i]-1].pb(mp(i,-1));
    	for(int i=1;i<=m;i++) scanf("%d",&qr[i]),st[qr[i]].pb(mp(i,1));
    	a[0]=a[n+1]=inf;
    	for(int i=1;i<=n;i++){l[i]=i-1;while(a[l[i]]<a[i]) l[i]=l[l[i]];}
    	for(int i=n;i>=1;i--){r[i]=i+1;while(a[r[i]]<a[i]) r[i]=r[r[i]];}
    	for(int i=1;i<=n;i++) l[i]++,r[i]--;
    	for(int i=1;i<=m;i++) ans[i]=qr[i]-ql[i]+1;
    	cnt=sm=bit(n+7,0);
    	for(int i=1;i<=n;i++){
    		add(cnt,l[i],1),add(sm,l[i],l[i]);
    		for(auto j:st[i]) ans[x(j)]-=(sum(sm,ql[x(j)],qr[x(j)])+sum(cnt,1,ql[x(j)]-1)*ql[x(j)])*y(j);
    	}
    	cnt=sm=bit(n+7,0);
    	for(int i=1;i<=n;i++){
    		add(cnt,r[i],1),add(sm,r[i],r[i]);
    		for(auto j:st[i]) ans[x(j)]+=(sum(sm,ql[x(j)],qr[x(j)])+sum(cnt,qr[x(j)]+1,n)*qr[x(j)])*y(j);
    	}
    	for(int i=1;i<=m;i++) printf("%lld%c",ans[i],"
     "[i<m]);
    	return 0;
    }
    

    祝大家学习愉快!

  • 相关阅读:
    41. 缺失的第一个正数
    40. 组合总和 II
    39. 组合总和
    38. 外观数列
    35. 搜索插入位置
    设计模式(1)单例模式
    一篇文章彻底搞懂Java的大Class到底是什么
    Vue实现一个MarkDown编辑器
    7 二分搜索树的原理与Java源码实现
    6 手写Java LinkedHashMap 核心源码
  • 原文地址:https://www.cnblogs.com/George1123/p/12823778.html
Copyright © 2011-2022 走看看