zoukankan      html  css  js  c++  java
  • 题解-NOI2003 智破连环阵

    题面

    NOI2003 智破连环阵

    (m) 个靶子 ((ax_j,ay_j))(n) 个箭塔 ((bx_i,by_i))。每个箭塔可以射中距离在 (k) 以内的靶子。第 (i+1) 只有第 (i) 个靶子被射中时才能被射中。每个箭塔只能用一次,现在可以安排每个箭塔的射击顺序,求最少需要几个箭塔可以射光 (m) 靶子。

    数据范围:(1le m,nle 100)(1le kle 1000)(1le ax_j,ay_j,bx_i,by_ile 10000)


    蒟蒻语

    爆搜神题,可惜题解都很晦涩,蒟蒻因为一个小错误折腾了一个晚上,现在拿到了最优解,于是准备写个逊逊的题解。


    蒟蒻解

    首先每个箭塔解决一个靶子区间。

    所以可以爆搜每个区间和箭塔匹配,这很明显是个二分图匹配。

    为了方便处理很多细节,设所有 (i) 为箭塔的下标,(j) 为靶子的下标。

    bool (con_{i,j}) 表示箭塔 (i) 与靶子 (j) 联通。

    由于每个箭塔的每个负责区间只需用后缀就可以有解,所以记录 (nex_{i,j}) 表示箭塔 (i) 在靶子 (j) 后面第一个射不到的靶子(即可用射到最右边的靶子下标 (+1))。

    // 这是一个很显然的递推
    R(i,0,n)L(j,0,m) con[i][j]&&(nex[i][j]=max(j+1,nex[i][j+1]));
    

    为了后面 A* 做准备,还可以求出一个 (mn_j) 表示打到靶子 (j) 的剩余步数下限。

    L(j,0,m)R(i,0,n) con[i][j]&&(mn[j]=min(mn[j],mn[nex[i][j]]+1));
    

    然后就可以开始惊心动魄的 Dfs 了。

    最直接的方法是先用 (mn_j) 来剪枝 A* 一下,然后用 (nex_{i,j}) 枚举下一个区间端点,用过的箭塔打个标记,匹配一个没用过的箭塔。

    前文说过这是个二分图匹配,所以有个野蛮操作(二分图优化):每次区间找好后,直接匈牙利匹配看看能不能匹配得到箭塔。

    这个操作时间复杂度比起原来操作是不增的。

    但是这有什么用呢?要配上另一个骚操作:逆序枚举下一个区间开始端点。

    由于用了匈牙利后完美匹配概率变高,所以就可以尽早找到优的答案,进一步 A* 剪枝。

    然后就结束了,时限 (2s) 的题跑得最慢的点 (4ms),总时间 (31ms)

    注意 Dfs 回溯算法两个坑:回溯不彻底、回溯用了全局变量。


    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    //Start
    typedef long long ll;
    typedef double db;
    #define mp(a,b) make_pair((a),(b))
    #define x first
    #define y second
    #define be(a) (a).begin()
    #define en(a) (a).end()
    #define sz(a) int((a).size())
    #define pb(a) push_back(a)
    #define R(i,a,b) for(int i=(a),I=(b);i<I;i++)
    #define L(i,a,b) for(int i=(b)-1,I=(a)-1;i>I;i--)
    const int iinf=0x3f3f3f3f;
    const ll linf=0x3f3f3f3f3f3f3f3f;
    
    /*
    注意: i 是箭塔,j 是靶子,s 是区间
    */
    
    //Data
    const int N=1e2;
    int m,n,k;
    pair<int,int> a[N],b[N];
    bitset<N> con[N];
    #define f(x) ((x)*(x))
    
    //Dfs
    bitset<N> e[N],vis;
    int nex[N][N+1],mn[N+1],mat[N],ans;
    bool match(int s){ // 匈牙利匹配
    	R(i,0,n)if(e[s][i]&&!vis[i]){
    		vis[i]=true;
    		if(!~mat[i]||match(mat[i]))	
    			return mat[i]=s,true;
    	}
    	return false;
    }
    void dfs(int j,int s){
    	if(ans<=s+mn[j]) return; //A*
    	if(j==m) return void(ans=s);
    	int cmat[N]; copy(mat,mat+n,cmat); // 这里的 cmat 你要是设为全局变量就死了,我在这里死了 2 个小时
    	L(J,j+1,m+1){
    		R(i,0,n) con[i][j]&&nex[i][j]>=J&&(e[s][i]=true);
    		R(i,0,n) vis[i]=false; match(s)?dfs(J,s+1):void();
    		R(i,0,n) con[i][j]&&nex[i][j]>=J&&(e[s][i]=false); //莫忘回溯
    		copy(cmat,cmat+n,mat);
    	}
    }
    
    //Main
    int main(){
    	ios::sync_with_stdio(0);
    	cin.tie(0),cout.tie(0);
    	cin>>m>>n>>k;
    	R(j,0,m) cin>>a[j].x>>a[j].y;
    	R(i,0,n) cin>>b[i].x>>b[i].y;
    	R(i,0,n)R(j,0,m) con[i][j]=(f(a[j].x-b[i].x)+f(a[j].y-b[i].y)<=f(k));
    	R(i,0,n) fill(nex[i],nex[i]+m+1,-1);
    	R(i,0,n)L(j,0,m) con[i][j]&&(nex[i][j]=max(j+1,nex[i][j+1]));
    	R(j,0,m) mn[j]=iinf;
    	L(j,0,m)R(i,0,n) con[i][j]&&(mn[j]=min(mn[j],mn[nex[i][j]]+1));
    	fill(mat,mat+n,-1),ans=min(n,m),dfs(0,0);
    	// 夹杂点骚操作(正确性不保证,仅用来抢最优解:猜测最终 ans<=mn[0]+5),把 ans 的初始值和 mn[0]+5 取 min
    	cout<<ans<<'
    ';
    	return 0;
    }
    

    祝大家学习愉快!

  • 相关阅读:
    JavaScript的关键点
    博客开始
    CCF
    java-CCF+杂七杂八
    【软件工程】需求分析V2再整理
    汇编 书上实验
    组原2
    chrome主页被绑架
    【软件工程】乱的一遭
    【我希望我能鼓起勇气】汇编语言
  • 原文地址:https://www.cnblogs.com/George1123/p/13741786.html
Copyright © 2011-2022 走看看