zoukankan      html  css  js  c++  java
  • hdu 2444 The Accomodation of Students (判断二分图,最大匹配)

    The Accomodation of Students
    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 8939    Accepted Submission(s): 3925

    Problem Description
    There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other.
    Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don't know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only paris appearing in the previous given set can live in the same room, which means only known students can live in the same room.
    Calculate the maximum number of pairs that can be arranged into these double rooms.
     
    Input
    For each data set:
    The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs.
    Proceed to the end of file.
     
    Output
    If these students cannot be divided into two groups, print "No". Otherwise, print the maximum number of pairs that can be arranged in those rooms.
     
    Sample Input
    4 4
    1 2
    1 3
    1 4
    2 3
    6 5
    1 2
    1 3
    1 4
    2 5
    3 6
     
    Sample Output
    No
    3

    C/C++:

      1 #include <map>
      2 #include <queue>
      3 #include <cmath>
      4 #include <vector>
      5 #include <string>
      6 #include <cstdio>
      7 #include <cstring>
      8 #include <climits>
      9 #include <iostream>
     10 #include <algorithm>
     11 #define INF 0xffffff
     12 using namespace std;
     13 const int my_max = 205;
     14 
     15 int nn, mm, n, m, a, b, my_line[my_max][my_max], my_G[my_max][my_max],
     16     my_left[my_max], my_right[my_max], my_color[my_max], my_book[my_max];
     17 
     18 bool my_dfs(int x)
     19 {
     20     for (int i = 1; i <= n; ++ i)
     21     {
     22         if(my_color[i] == 1 && !my_book[i] && my_G[x][i])
     23         {
     24             my_book[i] = 1;
     25             if (!my_right[i] || my_dfs(my_right[i]))
     26             {
     27                 my_right[i] = x;
     28                 return true;
     29             }
     30         }
     31     }
     32     return false;
     33 }
     34 
     35 bool my_bfs(int x)
     36 {
     37     queue <int> Q;
     38     Q.push(x);
     39     my_color[x] = 1;
     40 
     41     while (!Q.empty())
     42     {
     43         int my_now = Q.front();
     44         for (int i = 1; i <= n; ++ i)
     45         {
     46             if (my_G[my_now][i])
     47             {
     48                 if (my_color[i] == -1)
     49                 {
     50                     Q.push(i);
     51                     my_color[i] = !my_color[my_now];
     52                 }
     53 
     54                 else if (my_color[my_now] == my_color[i])
     55                     return true;
     56             }
     57         }
     58         Q.pop();
     59     }
     60 
     61     return false;
     62 }
     63 
     64 int my_hungarian()
     65 {
     66     int my_ans = 0;
     67 
     68     for (int i = 1; i <= n; ++ i)
     69     {
     70         memset(my_book, 0, sizeof(my_book));
     71         if (my_color[i] == 0 && my_dfs(i))
     72             my_ans ++;
     73     }
     74     return my_ans;
     75 }
     76 
     77 int main()
     78 {
     79     while (~scanf("%d%d", &n, &m))
     80     {
     81         memset(my_line, 0, sizeof(my_line));
     82         memset(my_right, 0, sizeof(my_right));
     83         memset(my_color, -1, sizeof(my_color));
     84         memset(my_G, 0, sizeof(my_G));
     85 
     86         while (m --)
     87         {
     88             scanf("%d%d", &a, &b);
     89             my_G[a][b] = my_G[b][a] = 1;
     90         }
     91 
     92         bool flag_is_bipG = true;
     93         for (int i = 1; i <= n; ++ i)
     94             if (my_color[i] == -1 && my_bfs(i))
     95             {
     96                 flag_is_bipG = false;
     97                 printf("No
    ");
     98                 break;
     99             }
    100         if (!flag_is_bipG) continue;
    101 
    102         printf("%d
    ", my_hungarian());
    103     }
    104     return 0;
    105 }
  • 相关阅读:
    Java集合:HashMap
    Java线程池原理
    Linux常用命令
    分布式系统基本概念
    接口中的default方法(默认方法)
    正则表达式匹配+过滤
    Java Optional类
    mongo过期索引
    Java8函数式接口简介
    JS版微信6.0分享接口用法分析
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9462083.html
Copyright © 2011-2022 走看看