先只考虑求某个f(k)。考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数。再考虑转换为计算每条边不被包含的方案数。这仅当所选点都在该边的同一侧。于是可得f(k)=C(n,k)+ΣC(n,k)-C(sizei,k)-C(n-sizei,k)。于是就可以O(n)求出某个f(k)了。
现在要求所有f(k),容易发现是一个卷积的形式,并且所给模数是一个隐蔽的NTT模数(最小原根是5),直接NTT即可。
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 200010 #define P 924844033 int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,p[N],size[N],fac[N],inv[N],r[N*3],f[N*3],g[N*3],ans[N],t; struct data{int to,nxt; }edge[N<<1]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;} void dfs(int k,int from) { size[k]=1; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from) { dfs(edge[i].to,k); size[k]+=size[edge[i].to]; } } void force() { for (int k=1;k<=n;k++) { int ans=1ll*C(n,k)*(n+1)%P; for (int i=1;i<=n;i++) ans=((ans-C(size[i],k)-C(n-size[i],k))%P+P)%P; printf("%d ",ans); } } void DFT(int *a,int n,int g) { for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=2;i<=n;i<<=1) { int wn=ksm(g,(P-1)/i); for (int j=0;j<n;j+=i) { int w=1; for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P) { int x=a[k],y=1ll*w*a[k+(i>>1)]%P; a[k]=(x+y)%P;a[k+(i>>1)]=(x-y+P)%P; } } } } void work() { memset(f,0,sizeof(f));memset(g,0,sizeof(g)); int t=1;while (t<=(n<<1)) t<<=1; for (int i=0;i<t;i++) r[i]=(r[i>>1]>>1)|(i&1)*(t>>1); for (int i=1;i<=n;i++) f[size[i]]=(f[size[i]]+fac[size[i]])%P; reverse(f,f+n+1); for (int i=0;i<=n;i++) g[i]=inv[i]; DFT(f,t,5),DFT(g,t,5); for (int i=0;i<t;i++) f[i]=1ll*f[i]*g[i]%P; DFT(f,t,ksm(5,P-2)); reverse(f,f+n+1); int u=ksm(t,P-2); for (int i=1;i<=n;i++) ans[i]=(ans[i]-1ll*f[i]*u%P*inv[i]%P+P)%P; } int main() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); n=read(); for (int i=1;i<n;i++) { int x=read(),y=read(); addedge(x,y),addedge(y,x); } dfs(1,1); fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; for (int i=2;i<=n;i++) inv[i]=1ll*inv[i-1]*inv[i]%P; //force(); for (int i=1;i<=n;i++) ans[i]=1ll*C(n,i)*(n+1)%P; work(); for (int i=1;i<=n;i++) size[i]=n-size[i]; work(); for (int i=1;i<=n;i++) printf("%d ",ans[i]); return 0; }