假设初始流为每条边的下界。但这样可能流量会不守恒,我们需要在上面加上一个附加流使流量守恒。只要让每个点开始的出/入流量与原初始流相等就可以求出附加流了。那么新建超源S超汇T,令degree[i]表示流入i的边的下界之和-从i流出的边的下界之和。
若degree[i]>0,则表示需要有额外degree[i]的流量流入i来达到流量平衡,那么从S向i连上界为degree[i]的边。
若degree[i]<0,则表示需要有额外degree[i]的流量从i流出来达到流量平衡,那么从i向T连上界为-degree[i]的边。
跑最大流就可以求出附加流。显然maxflow<=sigma(degree[i])。如果maxflow=sigma(degree[i]),那么有可行流。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 210 #define M 50000 #define S 0 #define T 201 #define inf 1000000000 int n,m,t=-1,p[N],degree[N],l[M],tot=0; int cur[N],d[N],q[N],ans=0; struct data{int to,nxt,cap,flow; }edge[M]; void addedge(int x,int y,int z) { t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=0,p[x]=t; t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=0,edge[t].flow=0,p[y]=t; } bool bfs() { memset(d,255,sizeof(d));d[S]=0; int head=0,tail=1;q[1]=S; do { int x=q[++head]; for (int i=p[x];~i;i=edge[i].nxt) if (d[edge[i].to]==-1&&edge[i].flow<edge[i].cap) { d[edge[i].to]=d[x]+1; q[++tail]=edge[i].to; } }while (head<tail); return ~d[T]; } int work(int k,int f) { if (k==T) return f; int used=0; for (int i=cur[k];~i;i=edge[i].nxt) if (d[k]+1==d[edge[i].to]) { int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow)); edge[i].flow+=w,edge[i^1].flow-=w; if (edge[i].flow<edge[i].cap) cur[k]=i; used+=w;if (used==f) return f; } if (used==0) d[k]=-1; return used; } void dinic() { while (bfs()) { memcpy(cur,p,sizeof(p)); ans+=work(S,inf); } } int main() { #ifndef ONLINE_JUDGE freopen("loj115.in","r",stdin); freopen("loj115.out","w",stdout); const char LL[]="%I64d"; #else const char LL[]="%lld"; #endif n=read(),m=read(); memset(p,255,sizeof(p)); for (int i=1;i<=m;i++) { int x=read(),y=read(),low=read(),high=read(); addedge(x,y,high-low); degree[y]+=low,degree[x]-=low; l[i]=low; } for (int i=1;i<=n;i++) if (degree[i]>0) addedge(S,i,degree[i]),tot+=degree[i]; else if (degree[i]<0) addedge(i,T,-degree[i]); dinic(); if (ans<tot) cout<<"NO"; else { cout<<"YES "; for (int i=1;i<=m;i++) printf("%d ",edge[i-1<<1].flow+l[i]); } return 0; }