显然1的位置确定了整个矩阵,每一段连续的数即是对该位置的限制。化一下式子可以发现是一段区间或一段区间的补集,最后要求的是他们的交。看起来不太好求,于是转为求补集的并,那么排个序就完了。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long ll read() { ll x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } ll n,m,ans,mx,mn,pos; int s,q,cnt=0; struct data { ll x,y; bool operator <(const data&a) const { return x<a.x; } }p[1000010]; int main() { #ifndef ONLINE_JUDGE freopen("b.in","r",stdin); freopen("b.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif n=read(),m=read(),s=read(),q=read(); while (s--) { ll a=(m+read()-2)%m,b=(m+read()-2)%m; if (a<b) cnt++,p[cnt].x=m-b,p[cnt].y=m-a-1; else if (a>b) { cnt++,p[cnt].x=0,p[cnt].y=m-a-1; cnt++,p[cnt].x=m-b,p[cnt].y=m-1; } } cnt++,p[cnt].x=m,p[cnt].y=m; sort(p+1,p+cnt+1); ll x=-1;pos=-1; for (int i=1;i<=cnt;i++) if (p[i].x<=x+1) x=max(x,p[i].y); else if (p[i].x-x==2&&(pos==-1)) pos=x+1,x=p[i].y; else {cout<<"Uncertain!";return 0;} if (pos==-1) {cout<<"Impossible!";return 0;} if (pos==0) pos=m; while (q--) { ll x=read(); if ((x+pos-2)/m+1<=n) ans^=(x+pos-2)/m+1^(x+pos-2)%m+1; } cout<<ans; return 0; }