zoukankan      html  css  js  c++  java
  • POJ:2739-Sum of Consecutive Prime Numbers(尺取)

    Sum of Consecutive Prime Numbers

    Time Limit: 1000MS Memory Limit: 65536K
    Total Submissions: 27853 Accepted: 14968

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2


    解题心得:

    1. 题意就是一个数可以由多个连续的素数相加得到,现在给你一个素数n,问你有几种由连续素数相加的方案。
    2. 先素数筛选,把所有的素数放在一个数组里面,然后用尺取法在里面跑就行了。

    #include <algorithm>
    #include <stdio.h>
    #include <string>
    #include <vector>
    using namespace std;
    const int maxn = 1e4+100;
    vector <int> ve;
    int n;
    bool vis[maxn];
    
    void pre_deal() {
        for(int i=2;i<=maxn;i++) {
            if(vis[i])
                continue;
            ve.push_back(i);
            for(int j=i*2;j<=maxn;j+=i) {
                vis[j] = true;
            }
        }
    }
    
    int cal_num() {
        int l = 0,r = 0,sum = 0,cnt = 0;
        while(r < ve.size()) {
            while(sum < n && r < ve.size()) {
                sum += ve[r];
                r++;
            }
            if(sum < n)
                break;
            if(sum == n)
                cnt++;
            sum -= ve[l];
            l++;
        }
        return cnt;
    }
    
    int main() {
        pre_deal();
        while(scanf("%d",&n) && n) {
            printf("%d
    ",cal_num());
        }
        return 0;
    }
  • 相关阅读:
    跳跃表原理
    查看Oracle操作历史的试图
    【概念】为什么有时全表扫描比通过索引扫描效率更高
    oracle驱动表以及如何确定驱动表
    SpringBoot学习(三)-----配置Bean
    leetcode 面试题58
    leetcode 1365 有多少小于当前数字的数字
    leetcode 1342 将数字变成 0 的操作次数
    leetcode1313 解压缩编码列表
    leetcode 1071 字符串的最大公因子
  • 原文地址:https://www.cnblogs.com/GoldenFingers/p/9107111.html
Copyright © 2011-2022 走看看