zoukankan      html  css  js  c++  java
  • 哈夫曼树:HDU5884-Sort(队列、哈夫曼树)

    Sort

    Time Limit: 3000/1000 MS (Java/Others)
    Memory Limit: 32768/32768 K (Java/Others)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5884

    Problem Description

    Recently, Bob has just learnt a naive sorting algorithm: merge sort. Now, Bob receives a task from Alice.
    Alice will give Bob N sorted sequences, and the i-th sequence includes ai elements. Bob need to merge all of these sequences. He can write a program, which can merge no more than k sequences in one time. The cost of a merging operation is the sum of the length of these sequences. Unfortunately, Alice allows this program to use no more than T cost. So Bob wants to know the smallest k to make the program complete in time.

    Input

    The first line of input contains an integer t0, the number of test cases. t0 test cases follow.
    For each test case, the first line consists two integers N (2≤N≤100000) and T (∑Ni=1 ai < T < 231).
    In the next line there are N integers a1,a2,a3,…,aN(∀i,0≤ai≤1000).

    Output

    For each test cases, output the smallest k.

    Sample Input

    1
    5 25
    1 2 3 4 5

    Sample Output

    3


    解题心得:

    1. 可以看出是一个k叉的哈夫曼树,确定k值的时候只能使用二分法。
    2. 要写k叉的哈夫曼树要克服几个条件,首先给出的数目不符合一个哈夫曼树的时候要填充0来凑数,然后一般写哈夫曼树都是使用优先队列,但是这个题卡掉了优先队列,可以根据合并的有序性来优化,使用两个队列,每次比较队顶元素的大小,取小的就行。
    3. 凑零的个数公式是:k - 1 - (n - 1)%(k - 1)。可以根据这个哈夫曼树的图来了解。
      这里写图片描述

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    vector <ll> ve;
    queue <ll> qu,qu2;
    bool checke(ll mid,ll m,ll n)
    {
        while(!qu.empty())
            qu.pop();
        while(!qu2.empty())
            qu2.pop();
        ll ans = 0;
        /*如果当前的数目不可以直接得到一个哈夫曼数的时候可以
        添加权值为0的根节点来充凑*/
        if((n - 1)%(mid - 1) != 0)
        {
            ll k = (n - 1)%(mid - 1);
            for(int i=0;i<mid-1-k;i++)
                qu.push(0);
        }
        for(int i=0;i<ve.size();i++)
            qu.push(ve[i]);
        /*可以根据合并的单调性用两个队列来优化时间,优化后的
        时间是O(nlogn);
        如果使用优先队列的复杂度会达到O(n(logn)^2);
        */
        while(!qu.empty() || !qu2.empty())
        {
            ll sum = 0;
            for(int i=0;i<mid;i++)
            {
                if(qu.empty() && qu2.empty())
                    break;
                if(qu.empty())
                {
                    sum += qu2.front();
                    qu2.pop();
                }
                else if(qu2.empty())
                {
                    sum += qu.front();
                    qu.pop();
                }
                else
                {
                    ll a = qu2.front();
                    ll b = qu.front();
                    if(a < b)
                    {
                        sum += a;
                        qu2.pop();
                    }
                    else
                    {
                        sum += b;
                        qu.pop();
                    }
                }
            }
            ans += sum;
            if(qu.empty() && qu2.empty())
                break;
            qu2.push(sum);
        }
        if(ans > m)
            return true;
        return false;
    }
    
    void solve(ll n,ll m)
    {
        ll r,mid,l;
        r = n,l = 0;
        while(l < r)
        {
            mid = (l + r) / 2;
            if(checke(mid,m,n))
                l = mid+1;
            else
                r = mid;
        }
        printf("%lld
    ",l);
    }
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            ve.clear();
            ll n,m;
            scanf("%lld%lld",&n,&m);
            ll N = n;
            while(N--)
            {
                ll temp;
                scanf("%lld",&temp);
                ve.push_back(temp);
            }
            sort(ve.begin(),ve.end());
            solve(n,m);
        }
    }
  • 相关阅读:
    6.Spark streaming技术内幕 : Job动态生成原理与源码解析
    5.Spark Streaming流计算框架的运行流程源码分析2
    4.Spark Streaming事务处理
    2.Spark Streaming运行机制和架构
    1.Spark Streaming另类实验与 Spark Streaming本质解析
    3.spark streaming Job 架构和容错解析
    35.Spark系统运行内幕机制循环流程
    unity3d 扩展NGUI Tweener —— TweenFillAmount
    unity3d 赛车游戏——复位点检测
    unity3d CarWaypoints插件
  • 原文地址:https://www.cnblogs.com/GoldenFingers/p/9107251.html
Copyright © 2011-2022 走看看