Description
You are given two positive integers A and B in Base C. For the equation:
We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k.
For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have:
(1) A=0*B+123
(2) A=1*B+23
As we want to maximize k, we finally get one solution: (1, 23)
The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively.
Input
The first line of the input contains an integer T (T≤10), indicating the number of test cases.
Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31.
Output
Sample Input
3 2bc 33f 16 123 100 10 1 1 2
Sample Output
(0,700) (1,23) (1,0)
任意进制转化问题,然后满足 A = k * B + d ; 最大,直接就是 k = A / B , d = A % B ;
AC代码:
#include"algorithm" #include"iostream" #include"cstring" #include"cstdlib" #include"cstdio" #include"string" #include"vector" #include"stack" #include"queue" #include"cmath" #include"map" using namespace std; typedef long long LL ; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define FK(x) cout<<"["<<x<<"] " #define memset(x,y) memset(x,y,sizeof(x)) #define memcpy(x,y) memcpy(x,y,sizeof(x)) #define bigfor(T) for(int qq=1;qq<= T ;qq++) const int MX=50; int main() { int T; LL c; char a[50],b[50]; scanf("%d",&T); bigfor(T) { scanf("%s %s %I64d",a,b,&c); int la=strlen(a); int lb=strlen(b); LL aa=0,bb=0; LL m=1; for(int i=la-1; i>=0; i--) { if(a[i]<='9'&&a[i]>='0')aa+=(a[i]-'0')*m; if(a[i]<='f'&&a[i]>='a')aa+=(a[i]-'a'+10)*m; m*=c; } m=1; for(int i=lb-1; i>=0; i--) { if(b[i]<='9'&&b[i]>='0')bb+=(b[i]-'0')*m; if(b[i]<='f'&&b[i]>='a')bb+=(b[i]-'a'+10)*m; m*=c; } LL ans1,ans2; ans1=aa/bb; ans2=aa%bb; printf("(%I64d,%I64d) ",ans1,ans2); } return 0; }