zoukankan      html  css  js  c++  java
  • ACM: FZU 2102 Solve equation

     FZU 2102   Solve equation
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    You are given two positive integers A and B in Base C. For the equation:

    A=k*B+d

    We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k.

    For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have:

    (1) A=0*B+123

    (2) A=1*B+23

    As we want to maximize k, we finally get one solution: (1, 23)

    The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively.

    Input

    The first line of the input contains an integer T (T≤10), indicating the number of test cases.

    Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31.

    Output

    For each test case, output the solution “(k,d)” to the equation in Base 10.

    Sample Input

    3
    2bc 33f 16
    123 100 10
    1 1 2
    

    Sample Output

    (0,700)
    (1,23)
    (1,0)

    任意进制转化问题,然后满足 A = k * B + d ; 最大,直接就是 k = A / B , d = A % B ;

    AC代码:

    #include"algorithm"
    #include"iostream"
    #include"cstring"
    #include"cstdlib"
    #include"cstdio"
    #include"string"
    #include"vector"
    #include"stack"
    #include"queue"
    #include"cmath"
    #include"map"
    using namespace std;
    typedef long long LL ;
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define FK(x) cout<<"["<<x<<"]
    "
    #define memset(x,y) memset(x,y,sizeof(x))
    #define memcpy(x,y) memcpy(x,y,sizeof(x))
    #define bigfor(T)  for(int qq=1;qq<= T ;qq++)
    
    const int MX=50;
    
    int main() {
    	int T;
    	LL c;
    	char a[50],b[50];
    	scanf("%d",&T);
    	bigfor(T) {
    		scanf("%s %s %I64d",a,b,&c);
    		int la=strlen(a);
    		int lb=strlen(b);
    		LL aa=0,bb=0;
    		LL m=1;
    		for(int i=la-1; i>=0; i--) {
    			if(a[i]<='9'&&a[i]>='0')aa+=(a[i]-'0')*m;
    			if(a[i]<='f'&&a[i]>='a')aa+=(a[i]-'a'+10)*m;
    			m*=c;
    		}
    		m=1;
    		for(int i=lb-1; i>=0; i--) {
    			if(b[i]<='9'&&b[i]>='0')bb+=(b[i]-'0')*m;
    			if(b[i]<='f'&&b[i]>='a')bb+=(b[i]-'a'+10)*m;
    			m*=c;
    		}
    		LL ans1,ans2;
    		ans1=aa/bb;
    		ans2=aa%bb;
    		printf("(%I64d,%I64d)
    ",ans1,ans2);
    	}
    	return 0;
    }
    

      



  • 相关阅读:
    [ Openstack ] Openstack-Mitaka 高可用之 环境初始化
    [ Openstack ] OpenStack-Mitaka 高可用之 概述
    Swift
    Swift
    报错
    归并排序
    堆排序
    插入排序
    早睡早起身体好
    用于查询的日期类型转换帮助类
  • 原文地址:https://www.cnblogs.com/HDMaxfun/p/5789484.html
Copyright © 2011-2022 走看看