zoukankan      html  css  js  c++  java
  • 快速傅里叶变换FFT——kuangbin模板

    /*
    #include <bits/stdc++.h>
    using namespace std;
    
    const double PI = acos(-1.0);
    struct Complex
    {
        double r,i;
        Complex(double _r = 0,double _i = 0)
        {
            r = _r; i = _i;
        }
        Complex operator +(const Complex &b)
        {
            return Complex(r+b.r,i+b.i);
        }
        Complex operator -(const Complex&b)
        {
            return Complex(r-b.r,i-b.i);
        }
        Complex operator *(const Complex &b)
        {
            return Complex(r*b.r-i*b.i,r*b.i+i*b.r);
        }
    };
    void change(Complex y[],int len)
    {
        int i,j,k;
        for(i = 1, j = len/2;i < len-1;i++)
        {
            if(i < j)swap(y[i],y[j]);
            k = len/2;
            while( j >= k)
            {
                j -= k;
                k /= 2;
            }
            if(j < k)j += k;
        }
    }
    void fft(Complex y[],int len,int on)
    {
        change(y,len);
        for(int h = 2;h <= len;h <<= 1)
        {
            Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for(int j = 0;j < len;j += h)
            {
                Complex w(1,0);
                for(int k = j;k < j+h/2;k++)
                {
                   Complex u = y[k];
                   Complex t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if(on == -1)
            for(int i = 0;i < len;i++)
                y[i].r /= len;
    }
    
    const int MAXN = 400040;
    Complex x1[MAXN];
    int a[MAXN/4];
    long long num[MAXN];//100000*100000会超int
    long long sum[MAXN];
    
    int main()
    {
        int T;
        int n;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            memset(num,0,sizeof(num));
            for(int i = 0;i < n;i++)
            {
                scanf("%d",&a[i]);
                num[a[i]]++;
            }
            sort(a,a+n);
            int len1 = a[n-1]+1;
            int len = 1;
            while( len < 2*len1 )len <<= 1;
            for(int i = 0;i < len1;i++)
                x1[i] = Complex(num[i],0);
            for(int i = len1;i < len;i++)
                x1[i] = Complex(0,0);
            fft(x1,len,1);
            for(int i = 0;i < len;i++)
                x1[i] = x1[i]*x1[i];
            fft(x1,len,-1);
            for(int i = 0;i < len;i++)
                num[i] = (long long)(x1[i].r+0.5);
            len = 2*a[n-1];
            //减掉取两个相同的组合
            for(int i = 0;i < n;i++)
                num[a[i]+a[i]]--;
            //选择的无序,除以2
            for(int i = 1;i <= len;i++)
            {
                num[i]/=2;
            }
            sum[0] = 0;
            for(int i = 1;i <= len;i++)
                sum[i] = sum[i-1]+num[i];
            long long cnt = 0;
            for(int i = 0;i < n;i++)
            {
                cnt += sum[len]-sum[a[i]];
                //减掉一个取大,一个取小的
                cnt -= (long long)(n-1-i)*i;
                //减掉一个取本身,另外一个取其它
                cnt -= (n-1);
                //减掉大于它的取两个的组合
                cnt -= (long long)(n-1-i)*(n-i-2)/2;
            }
            //总数
            long long tot = (long long)n*(n-1)*(n-2)/6;
            printf("%.7f
    ",(double)cnt/tot);
        }
        return 0;
    }*/
    
    #include <bits/stdc++.h>
    using namespace std;
    const double PI = acos(-1.0);
    const int MAXN = 400044;
    struct Complex{
        double x,y;
        Complex(double _x = 0.0,double _y =0.0){
            x = _x;y =_y;
        }
        Complex operator - (const Complex &b)const{
            return Complex(x-b.x,y-b.y);
        }
        Complex operator + (const Complex &b)const{
            return Complex(x+b.x,y+b.y);
        }
        Complex operator * (const Complex &b)const{
            return Complex(x*b.x - y*b.y,x*b.y + y*b.x);
        }
    };
    void change (Complex y[],int len){
        int i,j,k;
        for (i = 1,j = len/2;i<len -1;i++){
            if (i<j) swap(y[i],y[j]);
            k = len/2;
            while (j >= k){
                j-=k;
                k/=2;
            }
            if (j<k) j+=k;
        }
    }
    void fft(Complex y[],int len, int on)
    {
        change(y,len);
        for (int h = 2; h<=len;h<<=1){
            Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for (int j =0 ; j< len; j+=h){
                Complex w(1,0);
                for (int k = j;k < j+h/2;k++){
                    Complex u = y[k];
                    Complex t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if (on == -1)
            for (int i = 0; i<len; i++)
            y[i].x /= len;
    
    }
    
    Complex x1[MAXN];
    int a[MAXN/4];
    long long num[MAXN];
    long long sum[MAXN];
    int main()
    {
        int T;
        cin >> T;
        int n;
        while (T--){
            scanf("%d",&n);
            memset(num,0,sizeof(num));
            for (int i = 0; i< n; i++){
                scanf("%d",&a[i]);
                num[a[i]]++;
            }
            sort(a,a+n);
            int len1 = a[n-1]+1;
            int len = 1;
            while ( len < 2*len1 ) len <<= 1;
            for (int i = 0; i<len1 ; i++)
                x1[i] = Complex(num[i],0);
            for (int i = len1 ; i < len ;i++)
                x1[i] = Complex(0,0);
            fft(x1,len,1);
            for (int i = 0; i< len; i++)
                x1[i] = x1[i] * x1[i];
            fft(x1,len,-1);
            for (int i = 0 ; i<len ; i++)
                num[i] = (long long) (x1[i].x + 0.5);
    
    
            len = 2*a[n-1];
    
    
            for (int  i = 0 ; i<n; i++)
                num[a[i]+a[i]]-- ;
            for (int i = 1; i<=len;i++) num[i]/=2;
            sum[0] = 0;
            for (int i = 1; i<=len ; i++)
                sum[i] = sum[i-1] + num[i];
            long long cnt = 0;
            for (int i = 0; i <n; i++){
                cnt += sum[len] - sum[a[i]];
                cnt -= (long long)(n-1-i)*i;
                cnt -= (n-1);
                cnt -= (long long)(n-1-i)*(n-i-2)/2;
            }
            long long tot = (long long) n * (n-1)*(n-2)/6;
            printf("%.7f
    ",(double)(cnt*1.0/tot));
        }
        return 0;
    }
  • 相关阅读:
    树状数组和线段树
    N皇后问题(函数式编程与过程式)
    单例模式
    BitSet
    蓄水池抽样问题
    关于动态规划的一些感想
    53最大子序和
    5最长回文子串
    139单词拆分
    91.解码方法
  • 原文地址:https://www.cnblogs.com/HITLJR/p/7345513.html
Copyright © 2011-2022 走看看