zoukankan      html  css  js  c++  java
  • 调和级数求和

    调和级数求和

    调和级数:(1+frac{1}{2}+frac{1}{3}+cdots+frac{1}{n})是一个发散的序列,求和公式为:

    [sum^{n}_{i=1}{frac{1}{i}}=ln(n+1)+gamma ]

    其中(gamma)为欧拉常数,(gammaapprox0.5772156ldots)

    证明过程

    1. 首先需要知道不等式(frac{1}{n+1}<ln(1+frac{1}{n})<frac{1}{n})(通过(frac{1}{lfloor x+1 floor})(frac{1}{x})(frac{1}{lfloor x floor})三个函数的积分就可以得出)
    2. (sum^{n}_{i=1}{frac{1}{i}}=1+frac{1}{2}+cdots+frac{1}{n}>ln(1+1)+cdots+ln(1+frac{1}{n})=ln(n+1)),所以调和级数发散
    3. (sum^{n}_{i=1}{frac{1}{i}}=1+frac{1}{2}+cdots+frac{1}{n}<1+ln(1+1)+cdots+ln(1+frac{1}{n-1})=1+ln(n))
    4. (S_n=sum^{n}_{i=1}{frac{1}{i}}-ln(n)<1),也就是说有上界
    5. (S_{n+1}-S_n=frac{1}{n+1}-ln(frac{n}{n+1})>0),也就是单调递增
    6. 由单调有界极限定理可知(S_n)有极限,这个极限就是欧拉常数(gammaapprox0.5772156ldots)
  • 相关阅读:
    Vuejs的一些总结
    vue.js中$emit的理解
    Vue.js——60分钟快速入门
    [ARC096E] Everything on It
    [ARC093E] Bichrome Spanning Tree
    [ARC093F] Dark Horse
    [ARC100F] Colorful Sequences
    卡特兰数 学习笔记
    【原】图练习
    【原】图
  • 原文地址:https://www.cnblogs.com/HachikoT/p/13756598.html
Copyright © 2011-2022 走看看