zoukankan      html  css  js  c++  java
  • Hdoj 2604

    原题链接

    描述

    Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
    Your task is to calculate the number of E-queues mod M with length L by writing a program.

    输入

    Input a length L (0 <= L <= 10e6) and M.

    输出

    Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.

    样例输入

    3 8
    4 7
    4 8

    样例输出

    6
    2
    1

    思路

    首先是数学上找出递推关系式$ a_{n} = a_{n-1} + a_{n-3} + a_{n-4}, n > 4 $
    接下来当然可以去解通项,不过略麻烦而且不好算,故直接构建矩阵,用矩阵快速幂。

    [left[ egin{matrix} a_{n} & a_{n-1} & a_{n-2} & a_{n-3} \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 end{matrix} ight] = left[ egin{matrix} a_{n-1} & a_{n-2} & a_{n-3} & a_{n-4} \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 end{matrix} ight] left[ egin{matrix} 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 end{matrix} ight] ]

    代码

    #include <cstdio>
    #include<cstring>
    #define ll long long
    #define maxn 4
    using namespace std;
    
    int k, mod;
    
    struct Mat
    {
    	ll f[maxn][maxn];
    	void cls(){memset(f, 0, sizeof(f));}//全部置为0 
    	Mat() {cls();}
    	friend Mat operator * (Mat a, Mat b)
    	{
    		Mat res;
    		for(int i = 0; i < maxn; i++) for(int j = 0; j < maxn; j++)
    			for(int k = 0; k < maxn; k++)
    				(res.f[i][j] += a.f[i][k] * b.f[k][j]) %= mod;
    		return res;
    	}
    };
    
    Mat quick_pow(Mat a)  
    {  
        Mat ans;
        for(int i = 0; i < maxn; i++) ans.f[i][i] = 1;
        int b = k;
        while(b != 0)  
        {
            if(b & 1) ans = ans * a;
            b >>= 1;
            a = a * a;
        }
        return ans;  
    }
    
    int main()
    {
    	Mat A, B;
    	B.f[0][0] = 9; B.f[0][1] = 6; B.f[0][2] = 4; B.f[0][3] = 2;
    	A.f[0][0] = A.f[0][1] = A.f[1][2] = A.f[2][0] = A.f[2][3] = A.f[3][0] = 1;
    	while(~scanf("%d %d", &k, &mod))
    	{
    		Mat C;
    		if(k <= 4) {printf("%d
    ", B.f[0][4-k] % mod); continue;}
    		k -= 4;
    		C = quick_pow(A);
    		C = B * C;
    		printf("%d
    ", C.f[0][0]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    (6)阿里PAI_文本关键信息抽取、相似度分析
    NLP——LDA(Latent Dirichlet Allocation-潜在狄利克雷分布)
    (4)阿里PAI_基于用户画像的物品推荐
    (3)阿里PAI_基于协同过滤的商品推荐
    C++ 11—const用法(C++ primer读书笔记)
    Python基础知识回顾
    Qt学习笔记(一)
    伪代码的写法(转载)
    中国大学MOOC-陈越、何钦铭-数据结构-2015秋02-线性结构1题解
    数电碎片
  • 原文地址:https://www.cnblogs.com/HackHarry/p/8391899.html
Copyright © 2011-2022 走看看