zoukankan      html  css  js  c++  java
  • FFT

    W(nk,N)=e^(-j2pi/Nnk)//蝶形因子
    W(nk,N)=W(-nk,N)=W((N-n)k,N)=W(n(N-k),N) 相当于W(-nk,N)+e(-j*2npi)或+e(-j
    2kpi)对称性
    W(nk,N)=W((N+n)k,N)=W(n(N+k),N)周期性
    W(nk,N)=W(nmk,mN)=W(n/mk,N/m) = e(-j2pi/N*nk)=e(-j2mpi/Nmnk) 可约性
    W(0,N)=1 = e^0 = 1 W(N/2,N)=-1=e-jpi W(k+N/2,N)=-W(k,N) 特殊点
    X(k)=Y(k)+W(k,N)
    Z(k)//因为E(W((2n+1)k,N))=W(k,N)W(20+1)k,N)+W(k,N)W(21+1)k,N)+...=W(k,N)E(W(2nk,N)=W(k,N)E(W(nk,N/2))
    X(k+2/N)=Y(k)-W(k,N)Z(k)//这里Y(k)和Z(k)都有N/2的周期又W(k+2/N,N)=-W(k,N)
    一直进行奇偶分解到2点DFT,一共log(2,N)级,每级蝶形运算N/2,每次蝶形运算复数乘法1次,复数加法2次
    比直接DFT运算量N
    N降低至N/2*log(2,N)
    然后就是进行位交换了,比如第3个为011,位逆序为110交换到第6个处
    添加一个bin神链接:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210389.html
    其实这个3层还是没太懂

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 200010;
    int a[N];
    map<int,int> p;
    const double pi = acos(-1.0);
    class complex {
    public:
    	double r, i;
    	complex(){}
    	complex(double r, double i) {
    		this->r = r;
    		this->i = i;
    	}
    	complex operator +(const complex &rhs) {
    		return complex(r + rhs.r, i + rhs.i);
    	}
    	complex operator -(const complex &rhs) {
    		return complex(r - rhs.r, i - rhs.i);
    	}
    	complex operator *(const complex &rhs) {
    		return complex(r*rhs.r - i*rhs.i, r*rhs.i + i*rhs.r);
    	}
    };
    //改变输入序列,通过2进制逆序值
    void change(complex y[], int len) {
    	int x = 0;
    	while ((1 << x) < len)x++;
    	for (int i = 0;i < len;i++) {
    		int j = i;
    		int k = 0;
    		while (k < x/2) {
    			if ((j&(1 << k))&&!(j&(1<<(x-k-1)))){
    				j = j - (1 << k) + (1 << (x - k - 1));
    			}
    			else if (!(j&(1 << k)) && (j&(1 << (x - k - 1)))) {
    				j = j + (1 << k) - (1 << (x - k - 1));
    			}
    			k++;
    		}
    		if (j > i)
    			swap(y[i], y[j]);
    	}
    }
    void fft(complex y[], int len, int on)
    {
    	change(y, len);
    	/*complex Y[1000];
    	for (int i = 0;i < len;i++)
    		Y[i].r = y[i].r;*/
    	/*for (int k = 0;k < len;k++)
    	{
    		complex sc=complex(0, 0);
    		for (int j = 0;j < len;j++) {
    			complex c = complex(Y[j].r * cos(on*2 * pi*k*j / len), -Y[j].r * sin(on*2 * pi*k*j / len));
    			sc = sc+c;
    		}
    		y[k] = sc;
    	}*/
    	for (int l = 2;l <= len;l <<= 1) {
    		complex wn = complex(cos(-on * 2 * pi / l), sin(-on * 2 * pi / l));
    		for (int j = 0;j < len;j += l) {
    			complex wnp = complex(1, 0);
    			for (int k = j;k < j + l / 2;k++) {
    				complex u = y[k];
    				complex t = wnp*y[k + l / 2];
    				y[k] = u + t;
    				y[k + l / 2] = u - t;
    				wnp = wnp*wn;
    			}
    		}
    	}
    	//for (int h = 2; h <= len; h <<= 1)
    	//{
    		/*complex wn(cos(-on * 2 * pi / len), sin(-on * 2 * pi / len));
    		for (int j = 0;j < len;j ++)
    		{
    			complex w(1, 0);
    			for (int k = 0;k < len;k++)
    			{
    				complex u = y[k];
    				complex t = w*y[k + len / 2];
    				y[k] = u + t;
    				y[k + len / 2] = u - t;
    				w = w*wn;
    			}
    		}*/
    	//}
    	if (on == -1)
    		for (int i = 0;i < len;i++)
    			y[i].r /= len;
    }
    char s1[N], s2[N];
    complex a1[N], a2[N];
    int ans[N],tmp[N];
    int main()
    {
    	while (~scanf("%s%s", s1, s2)) {
    		int len1 = strlen(s1);
    		int len2 = strlen(s2);
    		int tlen = len1 + len2;
    		int len = 1;
    		while (len < tlen)len *= 2;//长度>=len1+len2-1的圆周卷积才等于线性卷积,又用的是基2-fft所以长度为2^x
    		for (int i = 0;i < len;i++) {
    			if (i < len1)a1[i].r = s1[len1-1-i] - '0';
    			else a1[i].r = 0;
    			a1[i].i = 0;
    		}//补齐0
    		for (int i = 0;i < len;i++) {
    			if (i < len2)a2[i].r = s2[len2-1-i] - '0';
    			else a2[i].r = 0;
    			a2[i].i = 0;
    		}//补齐0
    		//由于输出序列为顺序的所以采取抽取时间的fft方法
    		fft(a1, len, 1);//fft
    		fft(a2, len, 1);//fft
    		for (int i = 0;i < len;i++)
    			a1[i] = a1[i]*a2[i];
    			//Y(k)=H(k)*X(k)
    		//ifft可以用fft子程序实现,先求一次共轭,再fft,序列集体除以len,再求一次共轭,由于虚数部分为0,基本不用求共轭
    		fft(a1, len, -1);//ifft
    		for (int i = 0;i < len;i++) {
    			ans[i] = (int)(a1[i].r + 0.5);
    		}
    		for (int i = 1;i <= len;i++) {
    			ans[i] += ans[i - 1] / 10;
    			ans[i - 1] %= 10;
    		}
    		int x = 0;
    		len = len1 + len2 - 1;
    		for (;len>0;len--)
    			if (ans[len] != 0)break;
    		for (;len>=0;len--)
    			printf("%d", ans[len]);
    		printf("
    ");
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    百万级数据库优化方案
    MySQL架构及优化原理
    性能优化建议
    索引
    sql语句优化(持续更新)
    sql语句优化原理
    常用命令
    常见问题
    三、范围和生命周期
    【UVa】[11582]Colossal Fibonacci Numbers!
  • 原文地址:https://www.cnblogs.com/HaibaraAi/p/5043872.html
Copyright © 2011-2022 走看看