zoukankan      html  css  js  c++  java
  • 高斯分布_简介

    a. 一元高斯分布

      b. 多元高斯分布

        

    c. 似然函数

         

    d. 独立同分布(i.i.d  —> independent and identically distributed)

    给定一个样本集合,其中样本都取自于同一个分布,且彼此之间相互独立,称之为独立同分布;其特性就是这些样本的联合概率,为它们各自的边缘分布的乘积;

     

    e. 最大似然估计的局限性

     

    基于给定样本集合来估计分布(求解分布参数),常用的方法是最大似然估计法,即选择这样的分布参数,它能使得样本的联合概率最大。(疑惑:不是应该基于给定的样本数据,选择概率最大的分布参数么,两者有什么区别呢?)

     

    三个样本集合取自同一个高斯分布,分别对应上图中的(a)(b)(c),可以看出:

    (1)多次抽样产出,样本均值的期望等于真实分布的均值;

    (2)由于样本方差是由当前样本均值得到,故即便多次抽样,样本方差的期望较真实分布的方差偏小;

    上述情况就是所谓的偏置现象,这也是过拟合的本质原因。

     

  • 相关阅读:
    简单了解一下:var 、let、const
    C# FlagAttriute 的 小妙招
    项目经验面试题
    linux面试题详解
    jvm面试题详解
    数据库面试详解
    微服务框架面试题
    框架面试题(maven、ZooKeeper、Dubbo、Nginx、Redis、Lucene、Solr、ActiveMQ、JMS
    设计模式面试题详解
    WEB方面面试题详解
  • 原文地址:https://www.cnblogs.com/Happyhe/p/7541368.html
Copyright © 2011-2022 走看看