zoukankan      html  css  js  c++  java
  • POJ 3126-Prime Path(BFS+筛素数)

    Prime Path

    Time Limit: 1000MS Memory Limit: 65536K
    Total Submissions: 38194 Accepted: 20384

    Description

    The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
    — It is a matter of security to change such things every now and then, to keep the enemy in the dark.
    — But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
    — I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
    — No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
    — I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
    — Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

    Now, the minister of finance, who had been eavesdropping, intervened.
    — No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
    — Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?
    — In fact, I do. You see, there is this programming contest going on… Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
    1033
    1733
    3733
    3739
    3779
    8779
    8179
    The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

    Input

    One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

    Output

    One line for each case, either with a number stating the minimal cost or containing the word Impossible.

    Sample Input

    3
    1033 8179
    1373 8017
    1033 1033

    Sample Output

    6
    7
    0

    题目链接

    题目大意:输入一个T,表示包含T组测试样例,接下来有T行,每行输入两个四位素数,每次只能变化其中一位数,并且只能变化为素数,如果能从第一个数变化到第二个数,则输出最小变化次数,如果不能,则输出impossible。

    解题思路:这是POJ上的一道题目,考查BFS和素数筛法,这道题我们先把1000-10000之内的素数筛出来存放在prime数组中,true表示是个素数,false表示不是素数,这里我用的是埃氏筛法。然后输入两个数,对第一个数进行BFS,思路是这样的,每次我们能扩充N个节点,有四个方向,即个位,十位,百位,千位。每个方向又有9种选择(0-9)如果是千位则只有1-9。我们可以先将父亲节点的数拆成4个数分别存放在数组中,然后改变其中一位,有10种选择,如果改边以后的数等于原数则说明不能改,改之前判断一下就可以,扩充完成后,判断是否为素数且是否没有被扩充过,如果是则入队,每次扩之前判断一下是不是已经走到B了,如果是,则return。AC代码:

    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <queue>
    #include <stack>
    using namespace std;
    const int _max=1e4+50;
    bool prime[_max],book[_max];//分别定义素数数组和标记数组
    int t,a,b,ans;
    struct node {int num,s;};//以结构体的形式入队,num表示数,s表示步数
    int main()
    {
    	void isprime();
    	void bfs();
    	cin>>t;
    	memset(prime,true,sizeof(prime));//默认全为素数
    	isprime();//筛素数
    	while(t--)
    	{
    		cin>>a>>b;
    		ans=-1;
    		bfs();//对a进行广搜
    		if(ans==-1)
    		  cout<<"Impossible"<<endl;
    		else
    		  cout<<ans<<endl;
    	}
    	return 0;
    }
    void isprime()
    {
    	for(int i=2;i<=_max;i++)
    	  if(prime[i])
    	    for(int j=2*i;j<=_max;j+=i)//因为一个数的倍数一定不是素数,所以可以直接筛掉
    	      prime[j]=false;
    	for(int i=1;i<1000;i++)
    	  prime[i]=false; //数据范围1e3-1e4,所以我将1e3以内的数全部置为合数
    }
    void bfs()
    {
    	int ai[5];//存放数位
    	queue<node >q;
    	node n;
    	n.num=a;
    	n.s=0;
    	memset(book,false,sizeof(book));
    	book[n.num]=true;//最开始只有a数走过
    	q.push(n);//a先入队
    	while(!q.empty())
    	{
    		if(q.front().num==b)
    		{
    			ans=q.front().s;
    			return;
    		}
    		ai[0]=q.front().num%10;//拆数
    		ai[1]=q.front().num/10%10;
    		ai[2]=q.front().num/100%10;
    		ai[3]=q.front().num/1000;
    		for(int i=0;i<4;i++)
    		{
    			int num=ai[i];//每个位数依次改变
    			for(int j=0;j<10;j++)
    			  if(j!=num)//改后的数不能和原数相同
    			  {
    			  	ai[i]=j;
    			  	int num1=ai[0]+ai[1]*10+ai[2]*100+ai[3]*1000;
    			  	if(prime[num1]&&!book[num1])
    			  	{
    			  		book[num1]=true;
    			  		n.num=num1;
    			  		n.s=q.front().s+1;
    			  		q.push(n);//符合条件入队
    				}
    			  }
    			ai[i]=num;//最后改完一定要还原,不还原导致父亲节点不是原来的数
    		}
    		q.pop();//每次扩完后出队
    	}
    	return;
    }
    
  • 相关阅读:
    Oracle Dataguard原理
    [转]TOKUDB® VS. INNODB FLASH MEMORY
    [转]什么是简约设计
    [转]DAS、NAS、SAN存储系统分析
    [转]ocp|ocm考证系列文章!
    [转]数据库范式的设计
    Block Media Recovery, BMR
    [转]开启闪回以及闪回的四种原理
    [转]Oracle DB 执行表空间时间点恢复
    Losing All Members of an Online Redo Log Group
  • 原文地址:https://www.cnblogs.com/Hayasaka/p/14294318.html
Copyright © 2011-2022 走看看