题目大意:
就是现在有一堆扑克里面的牌有无数张, 每种合数的牌有4中不同花色各一张(0, 1都不是合数), 没有质数或者大小是0或者1的牌
现在这堆牌中缺失了其中的 c 张牌, 告诉你a, b, c接下来c张不同的丢失的牌, 然后求从这堆牌中拿出各种花色的牌各一张,
得到的点数和是k的种数有多少种(一种组合算作一种), 需要全部所有的a <= k <= b的k对应的结果
做法:FFT
技巧:
我们可以把它变成多项式,根据卷积性质,求得计数。
用x^k前的系数表示大小为k的牌有还是没有(1还是0), 一共4个多项式相乘即可, 得到结果的多项式中x^k前的系数代表的就是可以的方案数
因为我们用卷积(0,1,2,0多项式0是第一项),4个多项式相乘后,第len个位置的值是从4个和为len的地方来
所以可以完成统计a<->b的和的数量
注意精度问题
附上代码:
#include<bits/stdc++.h> using namespace std; const double eps(1e-8); typedef long long lint; const long double PI = acos(-1.0); bool isPrime[50010]; bool check[50010]; void init() { memset(isPrime, 0, sizeof(isPrime)); memset(check, 0, sizeof(check)); isPrime[0] = isPrime[1] = 1; check[0] = check[1] = 1; for(int i = 2; i <= 50000; i++) { if(check[i]) continue; isPrime[i] = 1; for(int j = i; j <= 50000; j += i) check[j] = 1; } return; } struct Complex { long double real, image; Complex(long double _real, long double _image) { real = _real; image = _image; } Complex(){} }; Complex operator + (const Complex &c1, const Complex &c2) { return Complex(c1.real + c2.real, c1.image + c2.image); } Complex operator - (const Complex &c1, const Complex &c2) { return Complex(c1.real - c2.real, c1.image - c2.image); } Complex operator * (const Complex &c1, const Complex &c2) { return Complex(c1.real*c2.real - c1.image*c2.image, c1.real*c2.image + c1.image*c2.real); } int rev(int id, int len) { int ret = 0; for(int i = 0; (1 << i) < len; i++) { ret <<= 1; if(id & (1 << i)) ret |= 1; } return ret; } Complex A[1 << 19]; void FFT(Complex *a, int len, int DFT) { for(int i = 0; i < len; i++) A[rev(i, len)] = a[i]; for(int s = 1; (1 << s) <= len; s++) { int m = (1 << s); Complex wm = Complex(cos(DFT*2*PI/m), sin(DFT*2*PI/m)); for(int k = 0; k < len; k += m) { Complex w = Complex(1, 0); for(int j = 0; j < (m >> 1); j++) { Complex t = w*A[k + j + (m >> 1)]; Complex u = A[k + j]; A[k + j] = u + t; A[k + j + (m >> 1)] = u - t; w = w*wm; } } } if(DFT == -1) for(int i = 0; i < len; i++) A[i].real /= len, A[i].image /= len; for(int i = 0; i < len; i++) a[i] = A[i]; return; } Complex S[1 << 19], H[1 << 19], C[1 << 19], D[1 << 19]; int main() { int a, b, c; init(); while(scanf("%d %d %d", &a, &b, &c), a || b || c) { int len = 1; while(len <= b) len <<= 1; len <<= 3;//好像因为有4个多项式 就要多开一点 for(int i = 0; i <= b; i++) if(!isPrime[i]) S[i] = H[i] = C[i] = D[i] = Complex(1, 0); else S[i] = H[i] = C[i] = D[i] = Complex(0, 0); for(int i = b + 1; i < len; i++) S[i] = H[i] = C[i] = D[i] = Complex(0, 0); int num; char type; for(int i = 0; i < c; i++) { scanf("%d%c", &num, &type); switch(type) { case 'S': S[num] = Complex(0, 0); break; case 'H': H[num] = Complex(0, 0); break; case 'C': C[num] = Complex(0, 0); break; case 'D': D[num] = Complex(0, 0); break; } } FFT(S, len, 1); FFT(H, len, 1); FFT(C, len, 1); FFT(D, len, 1); for(int i = 0; i < len; i++) S[i] = S[i]*H[i]*C[i]*D[i]; FFT(S, len, -1); for(int i = a; i <= b; i++) printf("%lld ", (lint)(S[i].real + 0.5)); putchar(' '); } return 0; }