zoukankan      html  css  js  c++  java
  • matlab下kmeans及pam算法对球型数据分类练习

    clear all;
    clc;
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %数据初始化
    Data=zeros(3,20000);
    %加噪声
    for i=1:4000
        Data(1,i)=200;
        Data(2,i)=200;
        Data(3,i)=200;
    end
    for i=4001:12000
        p=unifrnd(0,50);
        a=unifrnd(0,2*pi);
        b=unifrnd(0,pi);
        Data(1,i)=p*sin(a)*cos(b);
        Data(2,i)=p*sin(a)*sin(b);
        Data(3,i)=p*cos(a);
    end
    for i=12001:20000
        p=unifrnd(50,100);
        a=unifrnd(0,2*pi);
        b=unifrnd(0,pi);
        Data(1,i)=p*sin(a)*cos(b);
        Data(2,i)=p*sin(a)*sin(b);
        Data(3,i)=p*cos(a);
    end
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %样本数量
    [d,N]=size(Data);
    %聚类的数目
    K=2;
    %方法选择
    method='kmeans';
    %method='kmedoids';
    %选取初始点
    %max_Initial=max(20,N/(5*K));
    max_Initial=20;
    
    label=zeros(max_Initial,N);
    center=zeros(d,K,max_Initial);
    C=zeros(1,N);
    
    %主循环
    for initial_Case=1:max_Initial
        pointK=Initial_center(Data,K); 
        iter=0;
        max_iter=1e+3;
        % xK = pointK;
        disp(['------------KM进行第 ' num2str(initial_Case) ' 次重新选择初始中心-----------'])
        %%每次初始化K个中心点后,进行的循环
        while iter < max_iter
            iter = iter+1;
            if mod(iter,50)==0
                disp([' 内部循环进行第 ' num2str(iter) ' 次迭代'])
            end
            %%%根据数据矩阵P中每个点到中心点的距离(最小)确定所属分类
            for i=1:N
                dert = repmat(Data(:,i),1,K)-pointK;
                distK=sqrt(diag(dert'*dert));
                [~,j] = min(distK);
                C(i) = j;
            end
            %%%重新计算K个中心点
            xK_=zeros(d,K);
            for i=1:K
                Pi=Data(:,find(C==i));
                Nk = size(Pi,2);
                % K-Means K-Medoids唯一不同的地方:选择中心点的方式
                switch lower(method)
                    case 'kmeans' 
                        xK_(:,i) = sum(Pi,2)/Nk;
                    case 'kmedoids'
                        Dx2 = zeros(1,Nk);
                        for t=1:Nk
                            dx=Pi-Pi(:,t)*ones(1,Nk);
                            Dx2(t)=sum(sqrt(sum(dx.*dx,1)),2);
                        end
                        [~,min_ind] = min(Dx2);
                        xK_(:,i) = Pi(:,min_ind);
                    otherwise
                        errordlg('请输入正确的方法:kmeans-OR-kmedoids','MATLAB error');
                end
            end
            %判断是否达到结束条件
            if xK_==pointK % & iter>50
                disp(['###迭代 ' num2str(iter) ' 次得到收敛的解'])
                label(initial_Case,:) = C;
                center(:,:,initial_Case) = xK_;
                % plot_Graph(C);
                break;
            end
            pointK=xK_;
            %xK = xK_;
        end
        if iter == max_iter
            disp('###达到内部最大迭代次数1000,未得到收敛的解');
            label(initial_Case,:) = C;
            center(:,:,initial_Case) = xK_;
            %plot_Graph(C);
            %break
        end
    end
    
    %%%%增加对聚类结果最优性的比较 
    %距离差
    dist_N = zeros(max_Initial,K);
    for initial_Case=1:max_Initial
        for k=1:K
            tem=find(label(initial_Case,:)==k);
            dx=Data(:,tem)-center(:,k,initial_Case)*ones(1,size(tem,2));
            dxk=sqrt(sum(dx.*dx,1));
            dist_N(initial_Case,k)=sum(dxk);
            %dist_N(initial_Case,k)=dxk;
        end
    end
     
    %%%%对于max_Initial次初始化中心点得到的分类错误
    %%%%取错误最小的情况的Label作为最终分类
    %求K类总的误差
    dist_N_sum=sum(dist_N,2);
    [distmin,best_ind]=min(dist_N_sum);
    %最佳分组
    best_Label=label(best_ind,:);
    %最佳中心
    best_Center=center(:,:,best_ind);
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %三维散布图
    figure();
    scatter3(Data(1,:),Data(2,:),Data(3,:),'filled','cdata',best_Label);
    title('Data Distribution');
    function center=Initial_center(X,K)
    %选取初始中心
    N=size(X,2);
    rnd_Idx = randperm(N);
    center = X(:,rnd_Idx(1:K));
    end 
  • 相关阅读:
    delphi TreeView 从数据库添加节点的四种方法
    mac攻略(3) -- brew使用
    mac攻略(2) -- apache站点配置
    mac攻略(1) -- 简单配置php开发环境
    Mac通过brew安装reds、memcached
    golang urlencode
    golang GET 出现 x509: certificate signed by unknown authority
    git取消文件跟踪
    golang使用http client发起get和post请求示例
    PHP判断SQL语句是否合法:mysqli_error()
  • 原文地址:https://www.cnblogs.com/HelloDreams/p/5354997.html
Copyright © 2011-2022 走看看