zoukankan      html  css  js  c++  java
  • Kubernetes安装EFK教程(非存储持久化方式部署)

    1.简介

    这里所指的EFK是指:ElasticSearch,Fluentd,Kibana

    ElasticSearch

    Elasticsearch是一个基于Apache Lucene™的开源搜索和数据分析引擎引擎,Elasticsearch使用Java进行开发,并使用Lucene作为其核心实现所有索引和搜索的功能。它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。Elasticsearch不仅仅是Lucene和全文搜索,它还提供如下的能力:
    
    分布式的实时文件存储,每个字段都被索引并可被搜索;
    分布式的实时分析搜索引擎;
    可以扩展到上百台服务器,处理PB级结构化或非结构化数据。
    
    在Elasticsearch中,包含多个索引(Index),相应的每个索引可以包含多个类型(Type),这些不同的类型每个都可以存储多个文档(Document),每个文档又有多个属性。索引 (index) 类似于传统关系数据库中的一个数据库,是一个存储关系型文档的地方。Elasticsearch 使用的是标准的 RESTful API 和 JSON。此外,还构建和维护了很多其他语言的客户端,例如 Java, Python, .NET, 和 PHP。
    

    Fluentd

    Fluentd是一个开源数据收集器,通过它能对数据进行统一收集和消费,能够更好地使用和理解数据。Fluentd将数据结构化为JSON,从而能够统一处理日志数据,包括:收集、过滤、缓存和输出。Fluentd是一个基于插件体系的架构,包括输入插件、输出插件、过滤插件、解析插件、格式化插件、缓存插件和存储插件,通过插件可以扩展和更好的使用Fluentd。
    

    Kibana

    Kibana是一个开源的分析与可视化平台,被设计用于和Elasticsearch一起使用的。通过kibana可以搜索、查看和交互存放在Elasticsearch中的数据,利用各种不同的图表、表格和地图等,Kibana能够对数据进行分析与可视化
    

    2.下载需要用到的EFK的yaml文件

    kubernetes的github

    https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/fluentd-elasticsearch
    
    温馨提示:
       此github有非存储持久化方式部署,需要存储持久化请修改现有的yaml
      
    

    1583738200043

    下载连接

    mdkir /root/EFK
    cd /root/EFK
    
    wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/es-service.yaml
    
    wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/es-statefulset.yaml
    
    wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/fluentd-es-configmap.yaml
    
    wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/fluentd-es-ds.yaml
    
    wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/kibana-deployment.yaml
    
    wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/kibana-service.yaml
    

    或者使用easzlab的也可以

    https://github.com/easzlab/kubeasz/tree/master/manifests/efk
    
    温馨提示:
       此github,有非存储持久化部署方式,也有持久化部署方式。
    

    1583738463965

    下载连接地址:

    wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/es-without-pv/es-statefulset.yaml
    温馨提示:es-static-pv和es-dynamic-pv分别是静态pv和动太pv存储持久方案,如需要可参考,es-without-pv此文件夹是非存储持久方案
    
    wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/es-service.yaml
    
    wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/fluentd-es-configmap.yaml
    
    wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/fluentd-es-ds.yaml
    
    wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/kibana-deployment.yaml
    
    wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/kibana-service.yaml
    

    3.下载EFK需要的镜像

    yaml源文件需要的镜像及地址

    elasticsearch:v7.4.2        quay.io/fluentd_elasticsearch/elasticsearch:v7.4.2
    fluentd:v2.8.0              quay.io/fluentd_elasticsearch/fluentd:v2.8.0
    kibana-oss:7.4.2            docker.elastic.co/kibana/kibana-oss:7.4.2
    
    温馨提示:因v7.4.2测试了几次都存在问题,elasticsearch一直重启报错,故更新为6.6.1
    elasticsearch:v6.6.1          quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
    fluentd-elasticsearch:v2.4.0  quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0
    kibana-oss:6.6.1              docker.elastic.co/kibana/kibana-oss:6.6.1
    

    因不能上网,故在阿里云镜像上直接找到相对应的连接

    elasticsearch:v6.6.1            registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:v6.6.1
    fluentd-elasticsearch:v2.4.0    registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0
    kibana-oss:6.6.1                registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1
    
    

    使用docker pull把镜像拉下来

    docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1
    docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0
    docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1
    
    

    把镜像打标签使之与yaml需要的一致

    docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1 quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
    
    docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0  quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0
    
    docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1 docker.elastic.co/kibana/kibana-oss:6.6.1
    
    

    上传打标签前的节点

    docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1
    
    docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0
    
    docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1
    
    

    把镜像保存为tar,方便分发到其它的Node节点并导入

    docker save -o elasticsearch-v6.6.1           quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
    
    docker save -o fluentd-elasticsearch-v2.4.0 quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0
    
    docker save -o kibana-oss-6.6.1               docker.elastic.co/kibana/kibana-oss:6.6.1
    
    

    把打包的镜像传到其它节点

    scp -r elasticsearch-v6.6.1 fluentd-elasticsearch-v2.4.0  kibana-oss-6.6.12 k8s-node02:/root/
    
    

    **在Node02节点上导入镜像

    docker load -i elasticsearch-v6.6.1 && docker load -i fluentd-elasticsearch-v2.4.0 && docker load -i kibana-oss-6.6.1
    
    

    4.对kubernetes官方的EFK的yaml进行改动

    es-service.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

    apiVersion: v1
    kind: Service
    metadata:
      name: elasticsearch-logging
      namespace: kube-system
      labels:
        k8s-app: elasticsearch-logging
        kubernetes.io/cluster-service: "true"
        addonmanager.kubernetes.io/mode: Reconcile
        kubernetes.io/name: "Elasticsearch"
    spec:
      type: NodePort          #通过NodePort暴露端口,以便通过elasticsearch-head来连接elasticsearch查看
      ports:
      - port: 9200
        protocol: TCP
        targetPort: db
      selector:
        k8s-app: elasticsearch-logging
    
    

    es-statefulset.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

    # RBAC authn and authz
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: elasticsearch-logging
      namespace: kube-system
      labels:
        k8s-app: elasticsearch-logging
        kubernetes.io/cluster-service: "true"            #此行是新添加
        addonmanager.kubernetes.io/mode: Reconcile
    ---
    kind: ClusterRole
    apiVersion: rbac.authorization.k8s.io/v1
    metadata:
      name: elasticsearch-logging
      labels:
        k8s-app: elasticsearch-logging
        addonmanager.kubernetes.io/mode: Reconcile
        kubernetes.io/cluster-service: "true"            #此行是新添加
    rules:
    - apiGroups:
      - ""
      resources:
      - "services"
      - "namespaces"
      - "endpoints"
      verbs:
      - "get"
    ---
    kind: ClusterRoleBinding
    apiVersion: rbac.authorization.k8s.io/v1
    metadata:
      namespace: kube-system
      name: elasticsearch-logging
      labels:
        k8s-app: elasticsearch-logging
        kubernetes.io/cluster-service: "true"          #此行是新添加
        addonmanager.kubernetes.io/mode: Reconcile
    subjects:
    - kind: ServiceAccount
      name: elasticsearch-logging
      namespace: kube-system
      apiGroup: ""
    roleRef:
      kind: ClusterRole
      name: elasticsearch-logging
      apiGroup: ""
    ---
    # Elasticsearch deployment itself
    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      name: elasticsearch-logging
      namespace: kube-system
      labels:
        k8s-app: elasticsearch-logging
        version: v6.6.1
        kubernetes.io/cluster-service: "true"            #此行是新添加
        addonmanager.kubernetes.io/mode: Reconcile
    spec:
      serviceName: elasticsearch-logging
      replicas: 2
      selector:
        matchLabels:
          k8s-app: elasticsearch-logging
          version: v6.6.1
      template:
        metadata:
          labels:
            k8s-app: elasticsearch-logging
            version: v6.6.1
            kubernetes.io/cluster-service: "true"        #此行是新添加
        spec:
          serviceAccountName: elasticsearch-logging
          containers:
          - image: quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
            name: elasticsearch-logging
            imagePullPolicy: IfNotPresent       #默认为Always,修改为IfNotPresent
            resources:
              # need more cpu upon initialization, therefore burstable class
              limits:
                cpu: 1000m
             #   memory: 3Gi
              requests:
                cpu: 100m
             #   memory: 3Gi
            ports:
            - containerPort: 9200
              name: db
              protocol: TCP
            - containerPort: 9300
              name: transport
              protocol: TCP
           # livenessProbe:
           #   tcpSocket:
           #     port: transport
           #   initialDelaySeconds: 5
           #   timeoutSeconds: 10
           # readinessProbe:
           #   tcpSocket:
           #     port: transport
           #   initialDelaySeconds: 5
           #   timeoutSeconds: 10
            volumeMounts:
            - name: elasticsearch-logging
              mountPath: /data
            env:
            - name: "NAMESPACE"
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
          volumes:
          - name: elasticsearch-logging
            emptyDir: {}
          # Elasticsearch requires vm.max_map_count to be at least 262144.
          # If your OS already sets up this number to a higher value, feel free
          # to remove this init container.
          initContainers:
          - image: alpine:3.6
            command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"]
            name: elasticsearch-logging-init
            securityContext:
              privileged: true
    
    
    

    fluentd-es-ds.yaml文件内容如下,fluentd-es-configmap.yaml文件内容保持不变(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: fluentd-es
      namespace: kube-system
      labels:
        k8s-app: fluentd-es
        addonmanager.kubernetes.io/mode: Reconcile
    ---
    kind: ClusterRole
    apiVersion: rbac.authorization.k8s.io/v1
    metadata:
      name: fluentd-es
      labels:
        k8s-app: fluentd-es
        addonmanager.kubernetes.io/mode: Reconcile
    rules:
    - apiGroups:
      - ""
      resources:
      - "namespaces"
      - "pods"
      verbs:
      - "get"
      - "watch"
      - "list"
    ---
    kind: ClusterRoleBinding
    apiVersion: rbac.authorization.k8s.io/v1
    metadata:
      name: fluentd-es
      labels:
        k8s-app: fluentd-es
        addonmanager.kubernetes.io/mode: Reconcile
    subjects:
    - kind: ServiceAccount
      name: fluentd-es
      namespace: kube-system
      apiGroup: ""
    roleRef:
      kind: ClusterRole
      name: fluentd-es
      apiGroup: ""
    ---
    apiVersion: apps/v1
    kind: DaemonSet
    metadata:
      name: fluentd-es-v2.4.0
      namespace: kube-system
      labels:
        k8s-app: fluentd-es
        version: v2.4.0
        addonmanager.kubernetes.io/mode: Reconcile
    spec:
      selector:
        matchLabels:
          k8s-app: fluentd-es
          version: v2.4.0
      template:
        metadata:
          labels:
            k8s-app: fluentd-es
            version: v2.4.0
          # This annotation ensures that fluentd does not get evicted if the node
          # supports critical pod annotation based priority scheme.
          # Note that this does not guarantee admission on the nodes (#40573).
          annotations:
            seccomp.security.alpha.kubernetes.io/pod: 'docker/default'
        spec:
          priorityClassName: system-node-critical
          serviceAccountName: fluentd-es
          containers:
          - name: fluentd-es
            image: quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0  #镜像地址一定记得修改
            env:
            - name: FLUENTD_ARGS
              value: --no-supervisor -q
            resources:
              limits:
                memory: 500Mi
              requests:
                cpu: 100m
                memory: 200Mi
            volumeMounts:
            - name: varlog
              mountPath: /var/log
            - name: varlibdockercontainers
              mountPath: /var/lib/docker/containers
              readOnly: true
            - name: config-volume
              mountPath: /etc/fluent/config.d
           # ports:
           # - containerPort: 24231
            #  name: prometheus
            #  protocol: TCP
            #livenessProbe:
             # tcpSocket:
             #   port: prometheus
             # initialDelaySeconds: 5
             # timeoutSeconds: 10
            #readinessProbe:
             # tcpSocket:
             #   port: prometheus
             # initialDelaySeconds: 5
             # timeoutSeconds: 10
          terminationGracePeriodSeconds: 30
          volumes:
          - name: varlog
            hostPath:
              path: /var/log
          - name: varlibdockercontainers
            hostPath:
              path: /var/lib/docker/containers
          - name: config-volume
            configMap:
              name: fluentd-es-config-v0.2.0
    
    

    kibana-deployment.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: kibana-logging
      namespace: kube-system
      labels:
        k8s-app: kibana-logging
        addonmanager.kubernetes.io/mode: Reconcile
    spec:
      replicas: 1
      selector:
        matchLabels:
          k8s-app: kibana-logging
      template:
        metadata:
          labels:
            k8s-app: kibana-logging
          annotations:
            seccomp.security.alpha.kubernetes.io/pod: 'docker/default'
        spec:
          containers:
          - name: kibana-logging
            image: docker.elastic.co/kibana/kibana-oss:6.6.1   #镜像连接地址
            resources:
              # need more cpu upon initialization, therefore burstable class
              limits:
                cpu: 1000m
              requests:
                cpu: 100m
            env:
              #- name: ELASTICSEARCH_HOSTS
              - name: ELASTICSEARCH_URL
                value: http://elasticsearch-logging:9200
              #- name: SERVER_NAME
              #  value: kibana-logging
              - name: SERVER_BASEPATH
                value: ""    #kibana是通过nodeport方式进行访问,请把value的值改为此
                #value: /api/v1/namespaces/kube-system/services/kibana-logging/proxy
             # - name: SERVER_REWRITEBASEPATH
             #   value: "false"
            ports:
            - containerPort: 5601
              name: ui
              protocol: TCP
            #livenessProbe:            #livenessProbe和readinessProbe检测可以注释,不需要启用
             # httpGet:
             #   path: /api/status
             #   port: ui
             # initialDelaySeconds: 5
             # timeoutSeconds: 10
            #readinessProbe:
              #httpGet:
              #  path: /api/status
              #  port: ui
              #initialDelaySeconds: 5
              #timeoutSeconds: 10
    
    
    

    kibana-service.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)

    apiVersion: v1
    kind: Service
    metadata:
      name: kibana-logging
      namespace: kube-system
      labels:
        k8s-app: kibana-logging
        kubernetes.io/cluster-service: "true"
        addonmanager.kubernetes.io/mode: Reconcile
        kubernetes.io/name: "Kibana"
    spec:
      type: NodePort        #添加此选项,以便能直接通过IP:端口的方式访问kibana
      ports:
      - port: 5601
        protocol: TCP
        targetPort: ui
      selector:
        k8s-app: kibana-logging
    
    

    5.应用EFK的yaml所有文件,我把EFK需要的所有文件都保存到一个文件夹/root/EFK

    kubectl apply -f /root/EFK/
    
    

    6.查看svc暴露的端口

    1583767446857

    7.可以在谷歌浏览器安装elastisearch-head连接并查看

    可以在谷歌浏览器安装elastisearch-head连接并查看elasticsearch是否能正常连接上或有没有报错等之类
    
    

    1583767583248

    8.通过NodePort暴露kibana的service端口来访问kibana

    1583767987088

    1583767963928

    1583768014084

    1583768057606

  • 相关阅读:
    求数组元素出现的次数
    数组的一些内置方法
    二维数组
    创建对象
    取出数组最大值与最小值
    4-jQuery
    3-jQuery
    2-jQuery
    1-jQuery
    Spark共享变量(广播变量、累加器)
  • 原文地址:https://www.cnblogs.com/Heroge/p/12457188.html
Copyright © 2011-2022 走看看