1.简介
这里所指的EFK是指:ElasticSearch,Fluentd,Kibana
ElasticSearch
Elasticsearch是一个基于Apache Lucene™的开源搜索和数据分析引擎引擎,Elasticsearch使用Java进行开发,并使用Lucene作为其核心实现所有索引和搜索的功能。它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。Elasticsearch不仅仅是Lucene和全文搜索,它还提供如下的能力:
分布式的实时文件存储,每个字段都被索引并可被搜索;
分布式的实时分析搜索引擎;
可以扩展到上百台服务器,处理PB级结构化或非结构化数据。
在Elasticsearch中,包含多个索引(Index),相应的每个索引可以包含多个类型(Type),这些不同的类型每个都可以存储多个文档(Document),每个文档又有多个属性。索引 (index) 类似于传统关系数据库中的一个数据库,是一个存储关系型文档的地方。Elasticsearch 使用的是标准的 RESTful API 和 JSON。此外,还构建和维护了很多其他语言的客户端,例如 Java, Python, .NET, 和 PHP。
Fluentd
Fluentd是一个开源数据收集器,通过它能对数据进行统一收集和消费,能够更好地使用和理解数据。Fluentd将数据结构化为JSON,从而能够统一处理日志数据,包括:收集、过滤、缓存和输出。Fluentd是一个基于插件体系的架构,包括输入插件、输出插件、过滤插件、解析插件、格式化插件、缓存插件和存储插件,通过插件可以扩展和更好的使用Fluentd。
Kibana
Kibana是一个开源的分析与可视化平台,被设计用于和Elasticsearch一起使用的。通过kibana可以搜索、查看和交互存放在Elasticsearch中的数据,利用各种不同的图表、表格和地图等,Kibana能够对数据进行分析与可视化
2.下载需要用到的EFK的yaml文件
kubernetes的github
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/fluentd-elasticsearch
温馨提示:
此github有非存储持久化方式部署,需要存储持久化请修改现有的yaml
下载连接
mdkir /root/EFK
cd /root/EFK
wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/es-service.yaml
wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/es-statefulset.yaml
wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/fluentd-es-configmap.yaml
wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/fluentd-es-ds.yaml
wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/kibana-deployment.yaml
wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/fluentd-elasticsearch/kibana-service.yaml
或者使用easzlab的也可以
https://github.com/easzlab/kubeasz/tree/master/manifests/efk
温馨提示:
此github,有非存储持久化部署方式,也有持久化部署方式。
下载连接地址:
wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/es-without-pv/es-statefulset.yaml
温馨提示:es-static-pv和es-dynamic-pv分别是静态pv和动太pv存储持久方案,如需要可参考,es-without-pv此文件夹是非存储持久方案
wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/es-service.yaml
wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/fluentd-es-configmap.yaml
wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/fluentd-es-ds.yaml
wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/kibana-deployment.yaml
wget https://raw.githubusercontent.com/easzlab/kubeasz/master/manifests/efk/kibana-service.yaml
3.下载EFK需要的镜像
yaml源文件需要的镜像及地址
elasticsearch:v7.4.2 quay.io/fluentd_elasticsearch/elasticsearch:v7.4.2
fluentd:v2.8.0 quay.io/fluentd_elasticsearch/fluentd:v2.8.0
kibana-oss:7.4.2 docker.elastic.co/kibana/kibana-oss:7.4.2
温馨提示:因v7.4.2测试了几次都存在问题,elasticsearch一直重启报错,故更新为6.6.1
elasticsearch:v6.6.1 quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
fluentd-elasticsearch:v2.4.0 quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0
kibana-oss:6.6.1 docker.elastic.co/kibana/kibana-oss:6.6.1
因不能上网,故在阿里云镜像上直接找到相对应的连接
elasticsearch:v6.6.1 registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:v6.6.1
fluentd-elasticsearch:v2.4.0 registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0
kibana-oss:6.6.1 registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1
使用docker pull把镜像拉下来
docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1
docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0
docker pull registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1
把镜像打标签使之与yaml需要的一致
docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1 quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0 quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0
docker tag registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1 docker.elastic.co/kibana/kibana-oss:6.6.1
上传打标签前的节点
docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/elasticsearch:6.6.1
docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/fluentd-elasticsearch:v2.4.0
docker rmi registry.cn-hangzhou.aliyuncs.com/yfhub/kibana-oss:6.6.1
把镜像保存为tar,方便分发到其它的Node节点并导入
docker save -o elasticsearch-v6.6.1 quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
docker save -o fluentd-elasticsearch-v2.4.0 quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0
docker save -o kibana-oss-6.6.1 docker.elastic.co/kibana/kibana-oss:6.6.1
把打包的镜像传到其它节点
scp -r elasticsearch-v6.6.1 fluentd-elasticsearch-v2.4.0 kibana-oss-6.6.12 k8s-node02:/root/
**在Node02节点上导入镜像
docker load -i elasticsearch-v6.6.1 && docker load -i fluentd-elasticsearch-v2.4.0 && docker load -i kibana-oss-6.6.1
4.对kubernetes官方的EFK的yaml进行改动
es-service.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)
apiVersion: v1
kind: Service
metadata:
name: elasticsearch-logging
namespace: kube-system
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "Elasticsearch"
spec:
type: NodePort #通过NodePort暴露端口,以便通过elasticsearch-head来连接elasticsearch查看
ports:
- port: 9200
protocol: TCP
targetPort: db
selector:
k8s-app: elasticsearch-logging
es-statefulset.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)
# RBAC authn and authz
apiVersion: v1
kind: ServiceAccount
metadata:
name: elasticsearch-logging
namespace: kube-system
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true" #此行是新添加
addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: elasticsearch-logging
labels:
k8s-app: elasticsearch-logging
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/cluster-service: "true" #此行是新添加
rules:
- apiGroups:
- ""
resources:
- "services"
- "namespaces"
- "endpoints"
verbs:
- "get"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: kube-system
name: elasticsearch-logging
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true" #此行是新添加
addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
name: elasticsearch-logging
namespace: kube-system
apiGroup: ""
roleRef:
kind: ClusterRole
name: elasticsearch-logging
apiGroup: ""
---
# Elasticsearch deployment itself
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: elasticsearch-logging
namespace: kube-system
labels:
k8s-app: elasticsearch-logging
version: v6.6.1
kubernetes.io/cluster-service: "true" #此行是新添加
addonmanager.kubernetes.io/mode: Reconcile
spec:
serviceName: elasticsearch-logging
replicas: 2
selector:
matchLabels:
k8s-app: elasticsearch-logging
version: v6.6.1
template:
metadata:
labels:
k8s-app: elasticsearch-logging
version: v6.6.1
kubernetes.io/cluster-service: "true" #此行是新添加
spec:
serviceAccountName: elasticsearch-logging
containers:
- image: quay.io/fluentd_elasticsearch/elasticsearch:v6.6.1
name: elasticsearch-logging
imagePullPolicy: IfNotPresent #默认为Always,修改为IfNotPresent
resources:
# need more cpu upon initialization, therefore burstable class
limits:
cpu: 1000m
# memory: 3Gi
requests:
cpu: 100m
# memory: 3Gi
ports:
- containerPort: 9200
name: db
protocol: TCP
- containerPort: 9300
name: transport
protocol: TCP
# livenessProbe:
# tcpSocket:
# port: transport
# initialDelaySeconds: 5
# timeoutSeconds: 10
# readinessProbe:
# tcpSocket:
# port: transport
# initialDelaySeconds: 5
# timeoutSeconds: 10
volumeMounts:
- name: elasticsearch-logging
mountPath: /data
env:
- name: "NAMESPACE"
valueFrom:
fieldRef:
fieldPath: metadata.namespace
volumes:
- name: elasticsearch-logging
emptyDir: {}
# Elasticsearch requires vm.max_map_count to be at least 262144.
# If your OS already sets up this number to a higher value, feel free
# to remove this init container.
initContainers:
- image: alpine:3.6
command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"]
name: elasticsearch-logging-init
securityContext:
privileged: true
fluentd-es-ds.yaml文件内容如下,fluentd-es-configmap.yaml文件内容保持不变(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)
apiVersion: v1
kind: ServiceAccount
metadata:
name: fluentd-es
namespace: kube-system
labels:
k8s-app: fluentd-es
addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
- ""
resources:
- "namespaces"
- "pods"
verbs:
- "get"
- "watch"
- "list"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
name: fluentd-es
namespace: kube-system
apiGroup: ""
roleRef:
kind: ClusterRole
name: fluentd-es
apiGroup: ""
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: fluentd-es-v2.4.0
namespace: kube-system
labels:
k8s-app: fluentd-es
version: v2.4.0
addonmanager.kubernetes.io/mode: Reconcile
spec:
selector:
matchLabels:
k8s-app: fluentd-es
version: v2.4.0
template:
metadata:
labels:
k8s-app: fluentd-es
version: v2.4.0
# This annotation ensures that fluentd does not get evicted if the node
# supports critical pod annotation based priority scheme.
# Note that this does not guarantee admission on the nodes (#40573).
annotations:
seccomp.security.alpha.kubernetes.io/pod: 'docker/default'
spec:
priorityClassName: system-node-critical
serviceAccountName: fluentd-es
containers:
- name: fluentd-es
image: quay.io/fluentd_elasticsearch/fluentd_elasticsearch:v2.4.0 #镜像地址一定记得修改
env:
- name: FLUENTD_ARGS
value: --no-supervisor -q
resources:
limits:
memory: 500Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
- name: config-volume
mountPath: /etc/fluent/config.d
# ports:
# - containerPort: 24231
# name: prometheus
# protocol: TCP
#livenessProbe:
# tcpSocket:
# port: prometheus
# initialDelaySeconds: 5
# timeoutSeconds: 10
#readinessProbe:
# tcpSocket:
# port: prometheus
# initialDelaySeconds: 5
# timeoutSeconds: 10
terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers
- name: config-volume
configMap:
name: fluentd-es-config-v0.2.0
kibana-deployment.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)
apiVersion: apps/v1
kind: Deployment
metadata:
name: kibana-logging
namespace: kube-system
labels:
k8s-app: kibana-logging
addonmanager.kubernetes.io/mode: Reconcile
spec:
replicas: 1
selector:
matchLabels:
k8s-app: kibana-logging
template:
metadata:
labels:
k8s-app: kibana-logging
annotations:
seccomp.security.alpha.kubernetes.io/pod: 'docker/default'
spec:
containers:
- name: kibana-logging
image: docker.elastic.co/kibana/kibana-oss:6.6.1 #镜像连接地址
resources:
# need more cpu upon initialization, therefore burstable class
limits:
cpu: 1000m
requests:
cpu: 100m
env:
#- name: ELASTICSEARCH_HOSTS
- name: ELASTICSEARCH_URL
value: http://elasticsearch-logging:9200
#- name: SERVER_NAME
# value: kibana-logging
- name: SERVER_BASEPATH
value: "" #kibana是通过nodeport方式进行访问,请把value的值改为此
#value: /api/v1/namespaces/kube-system/services/kibana-logging/proxy
# - name: SERVER_REWRITEBASEPATH
# value: "false"
ports:
- containerPort: 5601
name: ui
protocol: TCP
#livenessProbe: #livenessProbe和readinessProbe检测可以注释,不需要启用
# httpGet:
# path: /api/status
# port: ui
# initialDelaySeconds: 5
# timeoutSeconds: 10
#readinessProbe:
#httpGet:
# path: /api/status
# port: ui
#initialDelaySeconds: 5
#timeoutSeconds: 10
kibana-service.yaml文件内容如下(温馨提示,带有叉的都是注释行,默认原文件可能是启用状态)
apiVersion: v1
kind: Service
metadata:
name: kibana-logging
namespace: kube-system
labels:
k8s-app: kibana-logging
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "Kibana"
spec:
type: NodePort #添加此选项,以便能直接通过IP:端口的方式访问kibana
ports:
- port: 5601
protocol: TCP
targetPort: ui
selector:
k8s-app: kibana-logging
5.应用EFK的yaml所有文件,我把EFK需要的所有文件都保存到一个文件夹/root/EFK
kubectl apply -f /root/EFK/
6.查看svc暴露的端口
7.可以在谷歌浏览器安装elastisearch-head连接并查看
可以在谷歌浏览器安装elastisearch-head连接并查看elasticsearch是否能正常连接上或有没有报错等之类